Python 在 Pandas 中从多索引恢复到单索引数据帧
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/32938060/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Reverting from multiindex to single index dataframe in pandas
提问by user308827
NI
YEAR MONTH datetime
2000 1 2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 NaN
In the dataframe above, I have a multilevel index consisting of the columns:
在上面的数据框中,我有一个由列组成的多级索引:
names=[u'YEAR', u'MONTH', u'datetime']
How do I revert to a dataframe with 'datetime' as index and 'YEAR' and 'MONTH' as normal columns?
如何恢复到以“datetime”为索引、以“YEAR”和“MONTH”为普通列的数据框?
采纳答案by EdChum
pass level=[0,1]
to just reset those levels:
通过level=[0,1]
以重置这些级别:
dist_df = dist_df.reset_index(level=[0,1])
In [28]:
df.reset_index(level=[0,1])
Out[28]:
YEAR MONTH NI
datetime
2000-01-01 2000 1 NaN
2000-01-02 2000 1 NaN
2000-01-03 2000 1 NaN
2000-01-04 2000 1 NaN
2000-01-05 2000 1 NaN
you can pass the label names alternatively:
您也可以传递标签名称:
df.reset_index(level=['YEAR','MONTH'])