Python 在 Pandas 中从多索引恢复到单索引数据帧

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/32938060/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 12:30:42  来源:igfitidea点击:

Reverting from multiindex to single index dataframe in pandas

pythonpandas

提问by user308827

                       NI
YEAR MONTH datetime        
2000 1     2000-01-01   NaN
           2000-01-02   NaN
           2000-01-03   NaN
           2000-01-04   NaN
           2000-01-05   NaN

In the dataframe above, I have a multilevel index consisting of the columns:

在上面的数据框中,我有一个由列组成的多级索引:

names=[u'YEAR', u'MONTH', u'datetime']

How do I revert to a dataframe with 'datetime' as index and 'YEAR' and 'MONTH' as normal columns?

如何恢复到以“datetime”为索引、以“YEAR”和“MONTH”为普通列的数据框?

采纳答案by EdChum

pass level=[0,1]to just reset those levels:

通过level=[0,1]以重置这些级别:

dist_df = dist_df.reset_index(level=[0,1])

In [28]:
df.reset_index(level=[0,1])

Out[28]:
            YEAR  MONTH  NI
datetime                     
2000-01-01  2000      1   NaN
2000-01-02  2000      1   NaN
2000-01-03  2000      1   NaN
2000-01-04  2000      1   NaN
2000-01-05  2000      1   NaN

you can pass the label names alternatively:

您也可以传递标签名称:

df.reset_index(level=['YEAR','MONTH'])