pandas 数据透视表错误:此时不支持 1 ndim Categorical
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/38663150/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pivot table error:1 ndim Categorical are not supported at this time
提问by Lisa
My goal is to box-plot the 'score' by 'label', I don't care about "date" and "Cusip". I want to use 'pivot' to reshape the data, so that each Label is in one column and I can boxplot it.
我的目标是按“标签”绘制“分数”,我不关心“日期”和“Cusip”。我想使用“枢轴”来重塑数据,以便每个标签都在一列中,我可以对其进行箱线图。
date Cusip Label Score
663182 2015-07-31 00846UAG AAA 138.15
663183 2015-07-31 00846UAH AAA 171.93
663184 2015-07-31 00846UAJ AAA 175.67
663185 2015-07-31 023767AA BB 187.92
663186 2015-07-31 023770AA BB 176.25
t.pivot(index=['date','Cusip'],columns='Label',values='Score')
Errors shows:
错误显示:
NotImplementedError: > 1 ndim Categorical are not supported at this time
More details:
更多细节:
C:\Anaconda3\lib\site-packages\pandas\core\categorical.py in __init__(self, values, categories, ordered, name, fastpath, levels)
285 try:
--> 286 codes, categories = factorize(values, sort=True)
287 except TypeError:
C:\Anaconda3\lib\site-packages\pandas\core\algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
184 uniques = vec_klass()
--> 185 labels = table.get_labels(vals, uniques, 0, na_sentinel, True)
186
pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_labels (pandas\hashtable.c:13921)()
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)
采纳答案by Nickil Maveli
You really should be using pivot_table
as you have got duplicate entries in your date
column.
您真的应该使用,pivot_table
因为您的date
列中有重复的条目。
pd.pivot_table(df, values='Score', index=['date', 'Cusip'], columns=['Label']).boxplot()
回答by citynorman
As an alternative to .pivot_table()
, which might do unwanted aggregations, you can do
作为.pivot_table()
可能会进行不需要的聚合的替代方法,您可以执行
df.set_index(['date', 'Cusip','Label'])['Score'].unstack()