pandas 如何使用熊猫选择重复的行?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/41042996/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 02:35:39 来源:igfitidea点击:
How to select duplicate rows with pandas?
提问by Federico Gentile
I have a dataframe like this:
我有一个这样的数据框:
import pandas as pd
dic = {'A':[100,200,250,300],
'B':['ci','ci','po','pa'],
'C':['s','t','p','w']}
df = pd.DataFrame(dic)
My goal is to separate the row in 2 dataframes:
我的目标是将行分成 2 个数据帧:
- df1 = contains all the rows that do not repeat values along column
B
(unque rows). - df2 = containts only the rows who repeat themeselves.
- df1 = 包含沿列不重复值的所有行(唯一
B
行)。 - df2 = 只包含重复自己的行。
The result should look like this:
结果应如下所示:
df1 = A B C df2 = A B C
0 250 po p 0 100 ci s
1 300 pa w 1 250 ci t
Note:
笔记:
- the dataframes could be in general very big and have many values that repeat in column B so the answer should be as generic as possible
- if there are no duplicates, df2 should be empty! all the results should be in df1
- 数据框通常可能非常大,并且有许多值在 B 列中重复,因此答案应尽可能通用
- 如果没有重复,df2 应该是空的!所有结果都应该在 df1 中
回答by jezrael
You can use Series.duplicated
with parameter keep=False
to create a mask for all duplicates and then boolean indexing
, ~
to invert the mask
:
您可以使用Series.duplicated
与参数keep=False
创建所有重复一个面具,然后boolean indexing
,~
反转mask
:
mask = df.B.duplicated(keep=False)
print (mask)
0 True
1 True
2 False
3 False
Name: B, dtype: bool
print (df[mask])
A B C
0 100 ci s
1 200 ci t
print (df[~mask])
A B C
2 250 po p
3 300 pa w