Python 如何从pandas中的groupby对象中选择列?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/19202093/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to select columns from groupby object in pandas?
提问by
I grouped my dataframe by the two columns below
我按下面的两列对我的数据框进行了分组
df = pd.DataFrame({'a': [1, 1, 3],
'b': [4.0, 5.5, 6.0],
'c': [7L, 8L, 9L],
'name': ['hello', 'hello', 'foo']})
df.groupby(['a', 'name']).median()
and the result is:
结果是:
b c
a name
1 hello 4.75 7.5
3 foo 6.00 9.0
How can I access the name
field of the resulting median (in this case hello, foo
)? This fails:
如何访问name
结果中位数的字段(在本例中hello, foo
)?这失败了:
df.groupby(['a', 'name']).median().name
采纳答案by EdChum
You need to get the index values, they are not columns. In this case level 1
您需要获取索引值,它们不是列。在这种情况下,级别 1
df.groupby(["a", "name"]).median().index.get_level_values(1)
Out[2]:
Index([u'hello', u'foo'], dtype=object)
You can also pass the index name
您还可以传递索引名称
df.groupby(["a", "name"]).median().index.get_level_values('name')
as this will be more intuitive than passing integer values.
因为这比传递整数值更直观。
You can convert the index values to a list by calling tolist()
您可以通过调用将索引值转换为列表 tolist()
df.groupby(["a", "name"]).median().index.get_level_values(1).tolist()
Out[5]:
['hello', 'foo']
回答by cwharland
You can also reset_index()
on your groupby result to get back a dataframe with the name column now accessible.
您还可以reset_index()
在 groupby 结果上取回名称列现在可访问的数据框。
import pandas as pd
df = pd.DataFrame({"a":[1,1,3], "b":[4,5.5,6], "c":[7,8,9], "name":["hello","hello","foo"]})
df_grouped = df.groupby(["a", "name"]).median().reset_index()
df_grouped.name
0 hello
1 foo
Name: name, dtype: object
If you perform an operation on a single column the return will be a series with multiindex and you can simply apply pd.DataFrame
to it and then reset_index.
如果您对单个列执行操作,则返回将是一个具有多pd.DataFrame
索引的系列,您可以简单地对其应用然后 reset_index。
回答by proutray
Set as_index = False
during groupby
as_index = False
在 groupby 期间设置
df = pandas.DataFrame({"a":[1,1,3], "b":[4,5.5,6], "c":[7,8,9], "name":["hello","hello","foo"]})
df.groupby(["a", "name"] , as_index = False).median()
回答by Mina
Using reset_index() after the group by will do the trick:
在 group by 之后使用 reset_index() 可以解决问题:
df = pd.DataFrame({'a': [1, 1, 3],
'b': [4.0, 5.5, 6.0],
'c': ['7L', '8L', '9L'],
'name': ['hello', 'hello', 'foo']})
df.groupby(['a', 'name']).median().reset_index().name
here is the result:
结果如下:
0 hello
1 foo
Name: name, dtype: object
and if you want the list of the values, you can simply:
如果您想要值列表,您可以简单地:
df = pd.DataFrame({'a': [1, 1, 3],
'b': [4.0, 5.5, 6.0],
'c': ['7L', '8L', '9L'],
'name': ['hello', 'hello', 'foo']})
df.groupby(['a', 'name']).median().reset_index().name.values
The result of using values will be a list containing the values for the name column. The code above returns the following list as the results:
使用值的结果将是一个包含名称列值的列表。上面的代码返回以下列表作为结果:
array(['hello', 'foo'], dtype=object)