Python 如何将 Tensorflow 张量维度(形状)作为 int 值?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/40666316/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 23:47:25  来源:igfitidea点击:

How to get Tensorflow tensor dimensions (shape) as int values?

pythontensorflowmachine-learningartificial-intelligence

提问by stackoverflowuser2010

Suppose I have a Tensorflow tensor. How do I get the dimensions (shape) of the tensor as integer values? I know there are two methods, tensor.get_shape()and tf.shape(tensor), but I can't get the shape values as integer int32values.

假设我有一个 Tensorflow 张量。如何将张量的尺寸(形状)作为整数值?我知道有两种方法tensor.get_shape()tf.shape(tensor),但我无法将形状值作为整int32数值获取。

For example, below I've created a 2-D tensor, and I need to get the number of rows and columns as int32so that I can call reshape()to create a tensor of shape (num_rows * num_cols, 1). However, the method tensor.get_shape()returns values as Dimensiontype, not int32.

例如,下面我创建了一个二维张量,我需要获取行数和列数,int32以便我可以调用reshape()来创建一个 shape 的张量(num_rows * num_cols, 1)。但是,该方法tensor.get_shape()将值作为Dimension类型返回,而不是int32

import tensorflow as tf
import numpy as np

sess = tf.Session()    
tensor = tf.convert_to_tensor(np.array([[1001,1002,1003],[3,4,5]]), dtype=tf.float32)

sess.run(tensor)    
# array([[ 1001.,  1002.,  1003.],
#        [    3.,     4.,     5.]], dtype=float32)

tensor_shape = tensor.get_shape()    
tensor_shape
# TensorShape([Dimension(2), Dimension(3)])    
print tensor_shape    
# (2, 3)

num_rows = tensor_shape[0] # ???
num_cols = tensor_shape[1] # ???

tensor2 = tf.reshape(tensor, (num_rows*num_cols, 1))    
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1750, in reshape
#     name=name)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 454, in apply_op
#     as_ref=input_arg.is_ref)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 621, in convert_to_tensor
#     ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 180, in _constant_tensor_conversion_function
#     return constant(v, dtype=dtype, name=name)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 163, in constant
#     tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape))
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 353, in make_tensor_proto
#     _AssertCompatible(values, dtype)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 290, in _AssertCompatible
#     (dtype.name, repr(mismatch), type(mismatch).__name__))
# TypeError: Expected int32, got Dimension(6) of type 'Dimension' instead.

回答by yuefengz

To get the shape as a list of ints, do tensor.get_shape().as_list().

要将形状作为整数列表,请执行tensor.get_shape().as_list().

To complete your tf.shape()call, try tensor2 = tf.reshape(tensor, tf.TensorShape([num_rows*num_cols, 1])). Or you can directly do tensor2 = tf.reshape(tensor, tf.TensorShape([-1, 1]))where its first dimension can be inferred.

要完成tf.shape()通话,请尝试tensor2 = tf.reshape(tensor, tf.TensorShape([num_rows*num_cols, 1]))。或者你可以直接tensor2 = tf.reshape(tensor, tf.TensorShape([-1, 1]))在可以推断出它的第一维的地方做。

回答by tijmen Verhulsdonck

Another way to solve this is like this:

解决这个问题的另一种方法是这样的:

tensor_shape[0].value

This will return the int value of the Dimension object.

这将返回 Dimension 对象的 int 值。

回答by Anna

for a 2-D tensor, you can get the number of rows and columns as int32 using the following code:

对于二维张量,您可以使用以下代码将行数和列数设为 int32:

rows, columns = map(lambda i: i.value, tensor.get_shape())

回答by Tensorflow Support

2.0 Compatible Answer: In Tensorflow 2.x (2.1), you can get the dimensions (shape) of the tensor as integer values, as shown in the Code below:

2.0 兼容答案:在 中Tensorflow 2.x (2.1),您可以获得张量的尺寸(形状)作为整数值,如下面的代码所示:

Method 1 (using tf.shape):

方法一(使用tf.shape

import tensorflow as tf
c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
Shape = c.shape.as_list()
print(Shape)   # [2,3]

Method 2 (using tf.get_shape()):

方法2(使用tf.get_shape()

import tensorflow as tf
c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
Shape = c.get_shape().as_list()
print(Shape)   # [2,3]

回答by thushv89

In later versions (tested with TensorFlow 1.14) there's a more numpy-like way to get the shape of a tensor. You can use tensor.shapeto get the shape of the tensor.

在更高版本(使用 TensorFlow 1.14 测试)中,有一种更类似 numpy 的方式来获取张量的形状。您可以使用tensor.shape来获取张量的形状。

tensor_shape = tensor.shape
print(tensor_shape)