Python(pandas):基于两列删除重复项,在另一列中保留具有最大值的行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/32093829/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 10:59:16  来源:igfitidea点击:

Python(pandas): removing duplicates based on two columns keeping row with max value in another column

pythonpandasduplicates

提问by Elsalex

I have a dataframe which contains duplicates values according to two columns (A and B):

我有一个数据框,其中包含根据两列(A 和 B)的重复值:

A B C
1 2 1
1 2 4
2 7 1
3 4 0
3 4 8

I want to remove duplicates keeping the row with max value in column C. This would lead to:

我想删除重复项,保留 C 列中具有最大值的行。这将导致:

A B C
1 2 4
2 7 1
3 4 8

I cannot figure out how to do that. Should I use drop_duplicates(), something else?

我不知道该怎么做。我应该使用drop_duplicates()其他东西吗?

采纳答案by JoeCondron

You can do it using group by:

您可以使用 group by 来完成:

c_maxes = df.groupby(['A', 'B']).C.transform(max)
df = df.loc[df.C == c_maxes]

c_maxesis a Seriesof the maximum values of Cin each group but which is of the same length and with the same index as df. If you haven't used .transformthen printing c_maxesmight be a good idea to see how it works.

c_maxes是每个组Series中 的最大值C但与 具有相同的长度和相同的索引df。如果您还没有使用过,.transform那么打印c_maxes可能是一个好主意,看看它是如何工作的。

Another approach using drop_duplicateswould be

另一种使用drop_duplicates方法是

df.sort('C').drop_duplicates(subset=['A', 'B'], take_last=True)

Not sure which is more efficient but I guess the first approach as it doesn't involve sorting.

不确定哪个更有效,但我猜是第一种方法,因为它不涉及排序。

EDIT:From pandas 0.18up the second solution would be

编辑:pandas 0.18第二个解决方案是

df.sort_values('C').drop_duplicates(subset=['A', 'B'], keep='last')

or, alternatively,

或者,或者,

df.sort_values('C', ascending=False).drop_duplicates(subset=['A', 'B'])

In any case, the groupbysolution seems to be significantly more performing:

无论如何,该groupby解决方案的性能似乎要好得多:

%timeit -n 10 df.loc[df.groupby(['A', 'B']).C.max == df.C]
10 loops, best of 3: 25.7 ms per loop

%timeit -n 10 df.sort_values('C').drop_duplicates(subset=['A', 'B'], keep='last')
10 loops, best of 3: 101 ms per loop

回答by b10n

I think groupby should work.

我认为 groupby 应该有效。

df.groupby(['A', 'B']).max()['C']

If you need a dataframe back you can chain the reset index call.

如果您需要返回数据帧,您可以链接重置索引调用。

df.groupby(['A', 'B']).max()['C'].reset_index()

回答by AlexT

You can do it with drop_duplicatesas you wanted

你可以drop_duplicates随心所欲

# initialisation
d = pd.DataFrame({'A' : [1,1,2,3,3], 'B' : [2,2,7,4,4],  'C' : [1,4,1,0,8]})

d = d.sort_values("C", ascending=False)
d = d.drop_duplicates(["A","B"])

If it's important to get the same order

如果获得相同的订单很重要

d = d.sort_index()

回答by Sudharsan

You can do this simply by using pandas drop duplicates function

您可以简单地使用熊猫删除重复项功能来做到这一点

df.drop_duplicates(['A','B'],keep= 'last')