Python scipy.cluster.hierarchy 教程
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/21638130/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Tutorial for scipy.cluster.hierarchy
提问by user2988577
I'm trying to understand how to manipulate a hierarchy cluster but the documentation is too ... technical?... and I can't understand how it works.
我试图了解如何操作层次结构集群,但文档太......技术性?......我无法理解它是如何工作的。
Is there any tutorial that can help me to start with, explaining step by step some simple tasks?
是否有任何教程可以帮助我开始,逐步解释一些简单的任务?
Let's say I have the following data set:
假设我有以下数据集:
a = np.array([[0, 0 ],
[1, 0 ],
[0, 1 ],
[1, 1 ],
[0.5, 0 ],
[0, 0.5],
[0.5, 0.5],
[2, 2 ],
[2, 3 ],
[3, 2 ],
[3, 3 ]])
I can easily do the hierarchy cluster and plot the dendrogram:
我可以轻松地进行层次聚类并绘制树状图:
z = linkage(a)
d = dendrogram(z)
- Now, how I can recover a specific cluster? Let's say the one with elements
[0,1,2,4,5,6]in the dendrogram? - How I can get back the values of that elements?
- 现在,我如何恢复特定的集群?让我们说
[0,1,2,4,5,6]在树状图中有元素的那个? - 我如何取回该元素的值?
采纳答案by embert
There are three steps in hierarchical agglomerative clustering (HAC):
层次凝聚聚类(HAC)分为三个步骤:
- Quantify Data (
metricargument) - Cluster Data (
methodargument) - Choose the number of clusters
- 量化数据(
metric参数) - 集群数据(
method参数) - 选择簇数
Doing
正在做
z = linkage(a)
will accomplish the first two steps. Since you did not specify any parameters it uses the standard values
将完成前两个步骤。由于您没有指定任何参数,它使用标准值
metric = 'euclidean'method = 'single'
metric = 'euclidean'method = 'single'
So z = linkage(a)will give you a single linked hierachical agglomerative clustering of a. This clustering is kind of a hierarchy of solutions. From this hierarchy you get some information about the structure of your data. What you might do now is:
所以z = linkage(a)会给你一个单一链接的层次凝聚聚类a。这种聚类是一种解决方案的层次结构。从这个层次结构中,您可以获得有关数据结构的一些信息。你现在可以做的是:
- Check which
metricis appropriate, e. g.cityblockorchebychevwill quantify your data differently (cityblock,euclideanandchebychevcorrespond toL1,L2, andL_infnorm) - Check the different properties / behaviours of the
methdos(e. g.single,completeandaverage) - Check how to determine the number of clusters, e. g. by reading the wiki about it
- Compute indices on the found solutions (clusterings) such as the silhouette coefficient(with this coefficient you get a feedback on the quality of how good a point/observation fits to the cluster it is assigned to by the clustering). Different indices use different criteria to qualify a clustering.
- 检查其
metric是否合适,如cityblock或chebychev将不同的量化数据(cityblock,euclidean以及chebychev对应于L1,L2和L_inf规范) - 检查
methdos(例如single,complete和average)的不同属性/行为 - 检查如何确定集群的数量,例如通过阅读有关它的维基
- 计算找到的解决方案(聚类)的索引,例如轮廓系数(通过该系数,您可以获得关于点/观测值与聚类分配给它的聚类的匹配程度的反馈)。不同的索引使用不同的标准来限定聚类。
Here is something to start with
这里有一些开始
import numpy as np
import scipy.cluster.hierarchy as hac
import matplotlib.pyplot as plt
a = np.array([[0.1, 2.5],
[1.5, .4 ],
[0.3, 1 ],
[1 , .8 ],
[0.5, 0 ],
[0 , 0.5],
[0.5, 0.5],
[2.7, 2 ],
[2.2, 3.1],
[3 , 2 ],
[3.2, 1.3]])
fig, axes23 = plt.subplots(2, 3)
for method, axes in zip(['single', 'complete'], axes23):
z = hac.linkage(a, method=method)
# Plotting
axes[0].plot(range(1, len(z)+1), z[::-1, 2])
knee = np.diff(z[::-1, 2], 2)
axes[0].plot(range(2, len(z)), knee)
num_clust1 = knee.argmax() + 2
knee[knee.argmax()] = 0
num_clust2 = knee.argmax() + 2
axes[0].text(num_clust1, z[::-1, 2][num_clust1-1], 'possible\n<- knee point')
part1 = hac.fcluster(z, num_clust1, 'maxclust')
part2 = hac.fcluster(z, num_clust2, 'maxclust')
clr = ['#2200CC' ,'#D9007E' ,'#FF6600' ,'#FFCC00' ,'#ACE600' ,'#0099CC' ,
'#8900CC' ,'#FF0000' ,'#FF9900' ,'#FFFF00' ,'#00CC01' ,'#0055CC']
for part, ax in zip([part1, part2], axes[1:]):
for cluster in set(part):
ax.scatter(a[part == cluster, 0], a[part == cluster, 1],
color=clr[cluster])
m = '\n(method: {})'.format(method)
plt.setp(axes[0], title='Screeplot{}'.format(m), xlabel='partition',
ylabel='{}\ncluster distance'.format(m))
plt.setp(axes[1], title='{} Clusters'.format(num_clust1))
plt.setp(axes[2], title='{} Clusters'.format(num_clust2))
plt.tight_layout()
plt.show()
Gives

给


