pandas 在sklearn中将文本列转换为数字
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/34915813/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
convert text columns into numbers in sklearn
提问by Selva Saravana Er
I'm new to data analytics. I'm trying some models in python Sklearn. I have a dataset in which some of the columns have text columns. Like below,
我是数据分析的新手。我正在 python Sklearn 中尝试一些模型。我有一个数据集,其中一些列有文本列。像下面,
Dataset
数据集
Is there a way to convert these column values into numbers in pandas or Sklearn?. Assigning numbers to these values will be right?. And what if a new string pops out in test data?.
有没有办法将这些列值转换为 Pandas 或 Sklearn 中的数字?为这些值分配数字是否正确?。如果测试数据中弹出一个新字符串怎么办?
Please advice.
请指教。
回答by Amir F
Consider using Label Encoding - it transforms the categorical data by assigning each category an integer between 0 and the num_of_categories-1:
考虑使用标签编码 - 它通过为每个类别分配一个介于 0 和 num_of_categories-1 之间的整数来转换分类数据:
from sklearn.preprocessing import LabelEncoder
df = pd.DataFrame(['a','b','c','d','a','c','a','d'], columns=['letter'])
letter
0 a
1 b
2 c
3 d
4 a
5 c
6 a
Applying:
申请:
le = LabelEncoder()
encoded_series = df[df.columns[:]].apply(le.fit_transform)
encoded_series:
编码系列:
letter
0 0
1 1
2 2
3 3
4 0
5 2
6 0
7 3
回答by maxymoo
You can convert them into integer codes by using the categorical datatype.
您可以使用分类数据类型将它们转换为整数代码。
column = column.astype('category')
column_encoded = column.cat.codes
As long as use use a tree based model with deep enough trees, eg GradientBoostingClassifier(max_depth=10
), your model should be able to split out the categories again.
只要使用具有足够深树的基于树的模型,例如GradientBoostingClassifier(max_depth=10
),您的模型就应该能够再次拆分类别。