Python 无法使用 MLPRegressor 拟合简单数据
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/41069905/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Trouble fitting simple data with MLPRegressor
提问by Robert Altena
I am trying out Python and scikit-learn. I cannot get MLPRegressor to come even close to the data. Where is this going wrong?
我正在尝试 Python 和 scikit-learn。我无法让 MLPRegressor 接近数据。这是哪里出错了?
from sklearn.neural_network import MLPRegressor
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0.0, 1, 0.01).reshape(-1, 1)
y = np.sin(2 * np.pi * x).ravel()
reg = MLPRegressor(hidden_layer_sizes=(10,), activation='relu', solver='adam', alpha=0.001,batch_size='auto',
learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=1000, shuffle=True,
random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9,
nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999,
epsilon=1e-08)
reg = reg.fit(x, y)
test_x = np.arange(0.0, 1, 0.05).reshape(-1, 1)
test_y = reg.predict(test_x)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(x, y, s=10, c='b', marker="s", label='real')
ax1.scatter(test_x,test_y, s=10, c='r', marker="o", label='NN Prediction')
plt.show()
The result is not very good:
Thank you.
结果不是很好:
谢谢。
回答by JiaweiZhuang
You just need to
你只需要
- change the solver to
'lbfgs'
. The default'adam'
is a SGD-like method, which is effective for large & messy data but pretty useless for this kind of smooth & small data. - use a smooth activation function such as
tanh
.relu
is almost linear, not suited for learning this simple non-linear function.
- 将求解器更改为
'lbfgs'
. 默认'adam'
是类似 SGD 的方法,它对大而杂乱的数据很有效,但对这种平滑和小数据来说却毫无用处。 - 使用平滑的激活函数,例如
tanh
。relu
几乎是线性的,不适合学习这种简单的非线性函数。
Here're the resultand the complete code. Even just 3 hidden neurons can achieve very high accuracy.
这是结果和完整的代码。即使只有 3 个隐藏的神经元也可以达到非常高的准确率。
from sklearn.neural_network import MLPRegressor
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0.0, 1, 0.01).reshape(-1, 1)
y = np.sin(2 * np.pi * x).ravel()
nn = MLPRegressor(hidden_layer_sizes=(3),
activation='tanh', solver='lbfgs')
n = nn.fit(x, y)
test_x = np.arange(-0.1, 1.1, 0.01).reshape(-1, 1)
test_y = nn.predict(test_x)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(x, y, s=5, c='b', marker="o", label='real')
ax1.plot(test_x,test_y, c='r', label='NN Prediction')
plt.legend()
plt.show()
回答by Oleg Melnikov
There are too few points to fit for this non-nonlinear model, so the fit is sensitive to the seed. A good seed helps, but it is not known a priori. You can also add more data points.
适合这个非线性模型的点太少,所以拟合对种子很敏感。一个好的种子有帮助,但它不是先验的。您还可以添加更多数据点。
By iterating through various seeds, I determined random_state=9
to work well. Surely there are others.
通过迭代各种种子,我决定random_state=9
好好工作。当然还有其他人。
from sklearn.neural_network import MLPRegressor
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0.0, 1, 0.01).reshape(-1, 1)
y = np.sin(2 * np.pi * x).ravel()
nn = MLPRegressor(
hidden_layer_sizes=(10,), activation='relu', solver='adam', alpha=0.001, batch_size='auto',
learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=1000, shuffle=True,
random_state=9, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
n = nn.fit(x, y)
test_x = np.arange(0.0, 1, 0.05).reshape(-1, 1)
test_y = nn.predict(test_x)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(x, y, s=1, c='b', marker="s", label='real')
ax1.scatter(test_x,test_y, s=10, c='r', marker="o", label='NN Prediction')
plt.show()
Here are the absolute errors of fits for seed integers i = 0..9
:
以下是种子整数拟合的绝对误差i = 0..9
:
print(i, sum(abs(test_y - np.sin(2 * np.pi * test_x).ravel())))
which yields:
产生:
0 13.0874999193
1 7.2879574143
2 6.81003360188
3 5.73859777885
4 12.7245375367
5 7.43361211586
6 7.04137436733
7 7.42966661997
8 7.35516939164
9 2.87247035261
Now, we can still improve fitting even with random_state=0
by increasing number of target points from 100 to 1000 and the size of hidden layers from 10 to 100:
现在,即使random_state=0
将目标点的数量从 100 增加到 1000,隐藏层的大小从 10 增加到 100 ,我们仍然可以改进拟合:
from sklearn.neural_network import MLPRegressor
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0.0, 1, 0.001).reshape(-1, 1)
y = np.sin(2 * np.pi * x).ravel()
nn = MLPRegressor(
hidden_layer_sizes=(100,), activation='relu', solver='adam', alpha=0.001, batch_size='auto',
learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=1000, shuffle=True,
random_state=0, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
n = nn.fit(x, y)
test_x = np.arange(0.0, 1, 0.05).reshape(-1, 1)
test_y = nn.predict(test_x)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(x, y, s=1, c='b', marker="s", label='real')
ax1.scatter(test_x,test_y, s=10, c='r', marker="o", label='NN Prediction')
plt.show()
Btw, some parameters are unnecessary in your MLPRegressor()
, such as momentum
, nesterovs_momentum
, etc. Check documentation. Also, it helps to seed your examples to make sure the results are reproducible ;)
顺便说一句,有些参数是在你不需要的MLPRegressor()
,比如momentum
,nesterovs_momentum
等检查文档。此外,它有助于为您的示例提供种子以确保结果可重复;)