Pandas:将 TimeGrouper 与另一个 Groupby 参数结合起来

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/16982370/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 20:53:20  来源:igfitidea点击:

Pandas: Combine TimeGrouper with another Groupby argument

pythongroup-bypandas

提问by Andy

I have the following DataFrame:

我有以下数据帧:

df = pd.DataFrame({
'Branch' : 'A A A A A B'.split(),
'Buyer': 'Carl Mark Carl Joe Joe Carl'.split(),
'Quantity': [1,3,5,8,9,3],
'Date' : [
DT.datetime(2013,1,1,13,0),
DT.datetime(2013,1,1,13,5),
DT.datetime(2013,10,1,20,0),
DT.datetime(2013,10,2,10,0),
DT.datetime(2013,12,2,12,0),                                      
DT.datetime(2013,12,2,14,0),
]})

from pandas.tseries.resample import TimeGrouper

How can I group this data by the Branch and on a 20 day period using TimeGrouper?

如何使用 TimeGrouper 按分支和 20 天的时间段对这些数据进行分组?

All my previous attempts failed, because I could not combine TimeGrouper with another argument in the groupby function.

我之前的所有尝试都失败了,因为我无法将 TimeGrouper 与 groupby 函数中的另一个参数结合起来。

I would deeply appreciate your help.

我将非常感谢您的帮助。

Thank you

谢谢

Andy

安迪

采纳答案by Jeff

From the discussion here: https://github.com/pydata/pandas/issues/3791

从这里的讨论:https: //github.com/pydata/pandas/issues/3791

In [38]: df.set_index('Date').groupby(pd.TimeGrouper('6M')).apply(lambda x: x.groupby('Branch').sum())
Out[38]: 
                   Quantity
           Branch          
2013-01-31 A              4
2014-01-31 A             22
           B              3

And a bit more complicated question

还有一个更复杂的问题

In [55]: def testf(df):
   ....:     if (df['Buyer'] == 'Mark').sum() > 0:
   ....:         return Series(dict(quantity = df['Quantity'].sum(), buyer = 'mark'))
   ....:     return Series(dict(quantity = df['Quantity'].sum()*100, buyer = 'other'))
   ....: 

In [56]: df.set_index('Date').groupby(pd.TimeGrouper('6M')).apply(lambda x: x.groupby('Branch').apply(testf))
Out[56]: 
                   buyer quantity
           Branch                
2013-01-31 A        mark        4
2014-01-31 A       other     2200
           B       other      300

回答by Andy Hayden

You can now use a TimeGrouper with another column (as of IIRCpandas version 0.14):

您现在可以将 TimeGrouper 与另一列一起使用(从IIRCpandas版本 0.14 开始):

In [11]: df1 = df.set_index('Date')

In [12]: g = df1.groupby([pd.TimeGrouper('20D'), 'Branch'])

In [13]: g.sum()
Out[13]:
                            Quantity
Date                Branch
2013-01-01 13:00:00 A              4
2013-09-18 13:00:00 A             13
2013-11-17 13:00:00 A              9
                    B              3