如何按两列或更多列对python pandas中的数据帧进行排序?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/17141558/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 00:35:56  来源:igfitidea点击:

How to sort a dataFrame in python pandas by two or more columns?

pythonpandaspython-2.7sortingdata-analysis

提问by Rakesh Adhikesavan

Suppose I have a dataframe with columns a, band c, I want to sort the dataframe by column bin ascending order, and by column cin descending order, how do I do this?

假设我有一列的数据帧ab并且c,我要通过列数据框排序b按升序,并经柱c降序排列,我该怎么办呢?

采纳答案by Andy Hayden

As of the 0.17.0 release, the sortmethod was deprecated in favor of sort_values. sortwas completely removed in the 0.20.0 release. The arguments (and results) remain the same:

从 0.17.0 版本开始,该sort方法已被弃用,而支持sort_values. sort在 0.20.0 版本中被完全删除。参数(和结果)保持不变:

df.sort_values(['a', 'b'], ascending=[True, False])


You can use the ascending argument of sort:

您可以使用 的升序参数sort

df.sort(['a', 'b'], ascending=[True, False])

For example:

例如:

In [11]: df1 = pd.DataFrame(np.random.randint(1, 5, (10,2)), columns=['a','b'])

In [12]: df1.sort(['a', 'b'], ascending=[True, False])
Out[12]:
   a  b
2  1  4
7  1  3
1  1  2
3  1  2
4  3  2
6  4  4
0  4  3
9  4  3
5  4  1
8  4  1


As commented by @renadeen

正如@renadeen 所评论的

Sort isn't in place by default! So you should assign result of the sort method to a variable or add inplace=True to method call.

默认情况下没有排序!因此,您应该将 sort 方法的结果分配给变量或将 inplace=True 添加到方法调用中。

that is, if you want to reuse df1 as a sorted DataFrame:

也就是说,如果您想将 df1 重用为已排序的 DataFrame:

df1 = df1.sort(['a', 'b'], ascending=[True, False])

or

或者

df1.sort(['a', 'b'], ascending=[True, False], inplace=True)

回答by Kyle Heuton

As of pandas 0.17.0, DataFrame.sort()is deprecated, and set to be removed in a future version of pandas. The way to sort a dataframe by its values is now is DataFrame.sort_values

从 pandas 0.17.0 开始,DataFrame.sort()已弃用,并将在未来版本的 pandas 中删除。现在按值对数据框进行排序的方法是DataFrame.sort_values

As such, the answer to your question would now be

因此,您的问题的答案现在是

df.sort_values(['b', 'c'], ascending=[True, False], inplace=True)

回答by jpp

For large dataframes of numeric data, you may see a significant performance improvement via numpy.lexsort, which performs an indirect sort using a sequence of keys:

对于数字数据的大型数据帧,您可能会通过 看到显着的性能改进numpy.lexsort,它使用一系列键执行间接排序:

import pandas as pd
import numpy as np

np.random.seed(0)

df1 = pd.DataFrame(np.random.randint(1, 5, (10,2)), columns=['a','b'])
df1 = pd.concat([df1]*100000)

def pdsort(df1):
    return df1.sort_values(['a', 'b'], ascending=[True, False])

def lex(df1):
    arr = df1.values
    return pd.DataFrame(arr[np.lexsort((-arr[:, 1], arr[:, 0]))])

assert (pdsort(df1).values == lex(df1).values).all()

%timeit pdsort(df1)  # 193 ms per loop
%timeit lex(df1)     # 143 ms per loop

One peculiarity is that the defined sorting order with numpy.lexsortis reversed: (-'b', 'a')sorts by series afirst. We negate series bto reflect we want this series in descending order.

一个特点是定义的排序顺序numpy.lexsort相反:首先(-'b', 'a')按系列排序a。我们否定系列b以反映我们希望按降序排列的系列。

Be aware that np.lexsortonly sorts with numeric values, while pd.DataFrame.sort_valuesworks with either string or numeric values. Using np.lexsortwith strings will give: TypeError: bad operand type for unary -: 'str'.

请注意,np.lexsort仅使用数字值排序,而pd.DataFrame.sort_values适用于字符串或数字值。np.lexsort与字符串一起使用将给出:TypeError: bad operand type for unary -: 'str'.