Python 如何将 Parquet 文件复制和转换为 csv
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/39419975/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to copy and convert parquet files to csv
提问by eleanora
I have access to a hdfs file system and can see parquet files with
我可以访问 hdfs 文件系统,并且可以查看镶木地板文件
hadoop fs -ls /user/foo
How can I copy those parquet files to my local system and convert them to csv so I can use them? The files should be simple text files with a number of fields per row.
如何将这些镶木地板文件复制到我的本地系统并将它们转换为 csv 以便我可以使用它们?这些文件应该是每行具有多个字段的简单文本文件。
回答by Zoltan
Try
尝试
df = spark.read.parquet("/path/to/infile.parquet")
df.write.csv("/path/to/outfile.csv")
Relevant API documentation:
相关API文档:
Both /path/to/infile.parquetand /path/to/outfile.csvshould be locations on the hdfs filesystem. You can specify hdfs://...explicitly or you can omit it as usually it is the default scheme.
双方/path/to/infile.parquet并/path/to/outfile.csv应在HDFS文件系统中的位置。您可以hdfs://...明确指定,也可以省略它,因为它通常是默认方案。
You should avoid using file://..., because a local file means a different file to every machine in the cluster. Output to HDFS instead then transfer the results to your local disk using the command line:
您应该避免使用file://...,因为本地文件对于集群中的每台机器都意味着不同的文件。输出到 HDFS,然后使用命令行将结果传输到本地磁盘:
hdfs dfs -get /path/to/outfile.csv /path/to/localfile.csv
Or display it directly from HDFS:
或者直接从 HDFS 显示:
hdfs dfs -cat /path/to/outfile.csv
回答by Zoltan
If there is a table defined over those parquet files in Hive (or if you define such a table yourself), you can run a Hive query on that and save the results into a CSV file. Try something along the lines of:
如果在 Hive 中的这些镶木地板文件上定义了一个表(或者如果您自己定义了这样一个表),您可以对其运行 Hive 查询并将结果保存到 CSV 文件中。尝试一些类似的东西:
insert overwrite local directory dirname row format delimited fields terminated by ',' select * from tablename;
Substitute dirnameand tablenamewith actual values. Be aware that any existing content in the specified directory gets deleted. See Writing data into the filesystem from queriesfor details.
用实际值代替dirname和tablename。请注意,指定目录中的任何现有内容都会被删除。有关详细信息,请参阅从查询将数据写入文件系统。
回答by Yusuf Hassan
Snippet for a more dynamic form, since you might not exactly know what's the name of your parquet file, will be:
更动态形式的片段,因为您可能不完全知道您的镶木地板文件的名称是什么,将是:
for filename in glob.glob("[location_of_parquet_file]/*.snappy.parquet"):
print filename
df = sqlContext.read.parquet(filename)
df.write.csv("[destination]")
print "csv generated"

