Python 熊猫中的不同 read_csv index_col = None / 0 / False

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/29862864/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 05:06:46  来源:igfitidea点击:

Different read_csv index_col = None / 0 / False in pandas

pythoncsvpandas

提问by markov zain

I used the read_csv command following below:

我使用了下面的 read_csv 命令:

    In [20]:
    dataframe = pd.read_csv('D:/UserInterest/output/ENFP_0719/Bookmark.csv', index_col=None)
    dataframe.head()
    Out[20]:
    Unnamed: 0  timestamp   url visits
    0   0   1.404028e+09    http://m.blog.naver.com/PostView.nhn?blogId=mi...   2
    1   1   1.404028e+09    http://m.facebook.com/l.php?u=http%3A%2F%2Fblo...   1
    2   2   1.404028e+09    market://details?id=com.kakao.story 1
    3   3   1.404028e+09    https://story-api.kakao.com/upgrade/install 4
    4   4   1.403889e+09    http://m.cafe.daum.net/WorldcupLove/Knj/173424...   1

The result shows column Unnamed:0and it is simillar when I used index_col=False, but when I used index_col=0, the result is following below:

结果显示列Unnamed:0,当我使用时它是相似的index_col=False,但是当我使用时index_col=0,结果如下:

dataframe = pd.read_csv('D:/UserInterest/output/ENFP_0719/Bookmark.csv', index_col=0)
dataframe.head()
Out[21]:
timestamp   url visits
0   1.404028e+09    http://m.blog.naver.com/PostView.nhn?blogId=mi...   2
1   1.404028e+09    http://m.facebook.com/l.php?u=http%3A%2F%2Fblo...   1
2   1.404028e+09    market://details?id=com.kakao.story 1
3   1.404028e+09    https://story-api.kakao.com/upgrade/install 4
4   1.403889e+09    http://m.cafe.daum.net/WorldcupLove/Knj/173424...   1

The result did show the column Unnamed:0, In here I want to ask, what is the difference between index_col=None, index_col=0, and index_col=False, I have read the documentation in this, but I still did not get the idea.

结果确实显示了该列Unnamed:0,在这里我想问一下index_col=Noneindex_col=0, 和之间有什么区别index_col=False,我已经阅读了this中的文档,但我仍然没有得到这个想法。

采纳答案by EdChum

UPDATE

更新

I think since version 0.16.1it will now raise an error if you try to pass Truefor index_colto avoid this ambiguity

我认为从0.16.1版本开始,如果您尝试传递Trueforindex_col以避免这种歧义,它现在会引发错误

ORIGINAL

原来的

A lot of people get confused by this, to specify the ordinal index of your column you should pass the int position in this case 0.

很多人对此感到困惑,要指定列的序数索引,您应该在这种情况下传递 int 位置0

In [3]:

import io
import pandas as pd
t="""index,a,b
0,hello,pandas"""
pd.read_csv(io.StringIO(t))
?
Out[3]:
   index      a       b
0      0  hello  pandas

The default value is index_col=Noneas shown above.

默认值index_col=None如上所示。

If we set index_col=0we're explicitly stating to treat the first column as the index:

如果我们设置,index_col=0我们明确声明将第一列视为索引:

In [4]:

pd.read_csv(io.StringIO(t), index_col=0)
Out[4]:
           a       b
index               
0      hello  pandas

If we pass index_col=Falsewe get the same result as None:

如果我们通过,index_col=False我们会得到与以下相同的结果None

In [5]:

pd.read_csv(io.StringIO(t), index_col=False)
Out[5]:
   index      a       b
0      0  hello  pandas

If we now state index_col=Nonewe get the same behaviour as when we didn't pass this param:

如果我们现在声明,index_col=None我们会得到与未传递此参数时相同的行为:

In [6]:

pd.read_csv(io.StringIO(t), index_col=None)
Out[6]:
   index      a       b
0      0  hello  pandas

There is a bug where if you pass Truethis was erroneously being converted to index_col=1as Truewas being converted to 1:

有一个错误,如果你通过Truethis 被错误地转换index_col=1True正在转换为1

In [6]:

pd.read_csv(io.StringIO(t), index_col=True)
Out[6]:
       index       b
a               
0      hello  pandas

EDIT

编辑

For the case where you have a blank index column which is what you have:

对于您拥有一个空白索引列的情况:

In [7]:

import io
import pandas as pd
t=""",a,b
0,hello,pandas"""
pd.read_csv(io.StringIO(t))
?
Out[7]:
   Unnamed: 0      a       b
0           0  hello  pandas
In [8]:

pd.read_csv(io.StringIO(t), index_col=0)
Out[8]:
       a       b
0  hello  pandas
In [9]:

pd.read_csv(io.StringIO(t), index_col=False)
Out[9]:
   Unnamed: 0      a       b
0           0  hello  pandas
In [10]:

pd.read_csv(io.StringIO(t), index_col=None)
Out[10]:
   Unnamed: 0      a       b
0           0  hello  pandas