当 YYYYMMDD 和 HH 在单独的列中时,使用 Python 中的 Pandas 解析日期

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/11615504/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 15:46:51  来源:igfitidea点击:

Parse dates when YYYYMMDD and HH are in separate columns using pandas in Python

pythonpandas

提问by Mauricio

I have a simple question related with csv files and parsing datetime.

我有一个与 csv 文件和解析日期时间相关的简单问题。

I have a csv file that look like this:

我有一个如下所示的 csv 文件:

YYYYMMDD, HH,    X
20110101,  1,   10
20110101,  2,   20
20110101,  3,   30

I would like to read it using pandas (read_csv) and have it in a dataframe indexed by the datetime. So far I've tried to implement the following:

我想使用 Pandas (read_csv) 读取它并将其放在由日期时间索引的数据框中。到目前为止,我已经尝试实现以下内容:

import pandas as pnd
pnd.read_csv("..\file.csv",  parse_dates = True, index_col = [0,1])

and the result I get is:

我得到的结果是:

                         X
YYYYMMDD    HH            
2011-01-01 2012-07-01   10
           2012-07-02   20
           2012-07-03   30

As you see the parse_dates in converting the HH into a different date.

正如您在将 HH 转换为不同日期时所看到的 parse_dates 一样。

Is there a simple and efficient way to combine properly the column "YYYYMMDD" with the column "HH" in order to have something like this? :

是否有一种简单有效的方法可以将“YYYYMMDD”列与“HH”列正确组合以得到这样的结果?:

                      X
Datetime              
2011-01-01 01:00:00  10
2011-01-01 02:00:00  20
2011-01-01 03:00:00  30

Thanks in advance for the help.

在此先感谢您的帮助。

回答by Chang She

If you pass a list to index_col, it means you want to create a hierarchical index out of the columns in the list.

如果您将列表传递给index_col,则意味着您要从列表中的列中创建一个分层索引。

In addition, the parse_dateskeyword can be set to either True or a list/dict. If True, then it tries to parse individual columns as dates, otherwise it combines columns to parse a single date column.

此外,parse_dates关键字可以设置为 True 或列表/字典。如果为 True,则它会尝试将单个列解析为日期,否则它将组合列以解析单个日期列。

In summary, what you want to do is:

总之,你想做的是:

from datetime import datetime
import pandas as pd
parse = lambda x: datetime.strptime(x, '%Y%m%d %H')
pd.read_csv("..\file.csv",  parse_dates = [['YYYYMMDD', 'HH']], 
            index_col = 0, 
            date_parser=parse)

回答by K.-Michael Aye

I am doing this all the time, so I tested different ways for speed. The fastest I found is the following, approx. 3 times faster than Chang She's solution, at least in my case, when taking the total time of file parsing and date parsing into account:

我一直在这样做,所以我测试了不同的速度方法。我发现最快的是以下,大约。考虑到文件解析和日期解析的总时间,至少在我的情况下,比 Chang She 的解决方案快 3 倍:

First, parse the data file using pd.read_csv withOUT parsing dates. I find that it is slowing down the file-reading quite a lot. Make sure that the columns of the CSV file are now columns in the dataframe df. Then:

首先,使用不解析日期的 pd.read_csv 解析数据文件。我发现它大大减慢了文件读取速度。确保 CSV 文件的列现在是数据框 df 中的列。然后:

format = "%Y%m%d %H"
times = pd.to_datetime(df.YYYYMMDD + ' ' + df.HH, format=format)
df.set_index(times, inplace=True)
# and maybe for cleanup
df = df.drop(['YYYYMMDD','HH'], axis=1)