Pandas:有条件的 groupby

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/39634175/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 02:04:13  来源:igfitidea点击:

Pandas: groupby with condition

pythonpandasfiltergroup-byconditional-statements

提问by Petr Petrov

I have dataframe:

我有数据框:

ID,used_at,active_seconds,subdomain,visiting,category
123,2016-02-05 19:39:21,2,yandex.ru,2,Computers
123,2016-02-05 19:43:01,1,mail.yandex.ru,2,Computers
123,2016-02-05 19:43:13,6,mail.yandex.ru,2,Computers
234,2016-02-05 19:46:09,16,avito.ru,2,Automobiles
234,2016-02-05 19:48:36,21,avito.ru,2,Automobiles
345,2016-02-05 19:48:59,58,avito.ru,2,Automobiles
345,2016-02-05 19:51:21,4,avito.ru,2,Automobiles
345,2016-02-05 19:58:55,4,disk.yandex.ru,2,Computers
345,2016-02-05 19:59:21,2,mail.ru,2,Computers
456,2016-02-05 19:59:27,2,mail.ru,2,Computers
456,2016-02-05 20:02:15,18,avito.ru,2,Automobiles
456,2016-02-05 20:04:55,8,avito.ru,2,Automobiles
456,2016-02-05 20:07:21,24,avito.ru,2,Automobiles
567,2016-02-05 20:09:03,58,avito.ru,2,Automobiles
567,2016-02-05 20:10:01,26,avito.ru,2,Automobiles
567,2016-02-05 20:11:51,30,disk.yandex.ru,2,Computers

I need to do

我需要去做

group = df.groupby(['category']).agg({'active_seconds': sum}).rename(columns={'active_seconds': 'count_sec_target'}).reset_index()

but I want to add there condition connected with

但我想在那里添加条件

df.groupby(['category'])['ID'].count()

and if count for categoryless than 5, I want to drop this category. I don't know, how can I write this condition there.

如果计数category小于5,我想放弃这个类别。我不知道,我怎么能在那里写这个条件。

回答by jezrael

As EdChum commented, you can use filter:

正如EdChum 评论的那样,您可以使用filter

Also you can simplify aggregation by sum:

您还可以通过sum以下方式简化聚合:

df = df.groupby(['category']).filter(lambda x: len(x) >= 5)

group = df.groupby(['category'], as_index=False)['active_seconds']
          .sum()
          .rename(columns={'active_seconds': 'count_sec_target'})
print (group)

      category  count_sec_target
0  Automobiles               233
1    Computers                47

Another solution with reset_index:

另一个解决方案reset_index

df = df.groupby(['category']).filter(lambda x: len(x) >= 5)

group = df.groupby(['category'])['active_seconds'].sum().reset_index(name='count_sec_target')
print (group)
      category  count_sec_target
0  Automobiles               233
1    Computers                47