Pandas:具有不等系列长度的布尔索引

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/23088921/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:55:49  来源:igfitidea点击:

Pandas: boolean indexing with unequal Series lengths

pythonpandas

提问by ARF

Given two pandas series objects A and Matches. Matches contains a subset of the indexes of A and has boolean entries. How does one do the equivalent of logical indexing?

给定两个 Pandas 系列对象 A 和 Matches。Matches 包含 A 的索引的子集并具有布尔条目。如何做相当于逻辑索引?

If Matches were the same length as A, one could just use:

如果匹配的长度与 A 相同,则可以使用:

A[Matches] = 5.*Matches

With Matches shorter than A one gets:

比 A 短的比赛得到:

error: Unalignable boolean Series key provided


Edit 1: Illustration as requested

编辑 1:按要求插图

In [15]: A = pd.Series(range(10))

In [16]: A
Out[16]: 0    0
1    1
2    2
3    3
4    4
5    5
6    6
7    7
8    8
9    9
dtype: int64

In [17]: Matches = (A<3)[:5]

In [18]: Matches
Out[18]: 0     True
1     True
2     True
3    False
4    False
dtype: bool

In [19]: A[Matches] = None
---------------------------------------------------------------------------
IndexingError                             Traceback (most recent call last)
<ipython-input-19-7a04f32ce860> in <module>()
----> 1 A[Matches] = None

C:\Anaconda\lib\site-packages\pandas\core\series.py in __setitem__(self, key, value)
    631 
    632         if _is_bool_indexer(key):
--> 633             key = _check_bool_indexer(self.index, key)
    634             try:
    635                 self.where(~key, value, inplace=True)

C:\Anaconda\lib\site-packages\pandas\core\indexing.py in _check_bool_indexer(ax, key)
   1379         mask = com.isnull(result.values)
   1380         if mask.any():
-> 1381             raise IndexingError('Unalignable boolean Series key provided')
   1382 
   1383         result = result.astype(bool).values

IndexingError: Unalignable boolean Series key provided

In [20]: 

The result I am looking for is:

我正在寻找的结果是:

In [16]: A
Out[16]: 0    None
1    None
2    None
3    3
4    4
5    5
6    6
7    7
8    8
9    9
dtype: int64

The construction of the Matches series is artificial and for illustration only. Also, in my case row indexes are obviously non-numeric and not equal to element values...

Matches 系列的构建是人为的,仅用于说明。此外,在我的情况下,行索引显然是非数字的,不等于元素值......

采纳答案by DSM

Well, you can't have what you want, because int64is not a possible dtype for a series containing None. None isn't an integer. But you can get close:

好吧,你不能拥有你想要的东西,因为int64对于包含 None 的系列来说,这不是一个可能的 dtype。None 不是整数。但你可以接近:

>>> A = pd.Series(range(10))
>>> Matches = (A<3)[:5]
>>> A[Matches[Matches].index] = None
>>> A
0    None
1    None
2    None
3       3
4       4
5       5
6       6
7       7
8       8
9       9
dtype: object

Which works because Matches[Matches]selects the elements of Matcheswhich are true.

之所以有效,是因为Matches[Matches]选择了Matches其中正确的元素。