如何使用 OpenCV 在 Python 中向图像添加噪声(高斯/盐和胡椒等)

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/22937589/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 02:00:42  来源:igfitidea点击:

How to add noise (Gaussian/salt and pepper etc) to image in Python with OpenCV

pythonopencv

提问by Sanchit

I am wondering if there exists some functions in Python with OpenCV or any other python image processing library that adds Gaussian or salt and pepper noise to an image? For example, in MATLAB there exists straight-forward functions that do the same job.

我想知道 Python 中是否存在一些带有 OpenCV 的函数或任何其他向图像添加高斯或椒盐噪声的 Python 图像处理库?例如,在 MATLAB 中存在执行相同工作的直接函数。

Or, how to add noise to an image using Python with OpenCV?

或者,如何使用 Python 和 OpenCV 向图像添加噪声?

采纳答案by Shubham Pachori

The Function adds gaussian , salt-pepper , poisson and speckle noise in an image

该函数在图像中添加高斯、椒盐、泊松和斑点噪声

Parameters
----------
image : ndarray
    Input image data. Will be converted to float.
mode : str
    One of the following strings, selecting the type of noise to add:

    'gauss'     Gaussian-distributed additive noise.
    'poisson'   Poisson-distributed noise generated from the data.
    's&p'       Replaces random pixels with 0 or 1.
    'speckle'   Multiplicative noise using out = image + n*image,where
                n is uniform noise with specified mean & variance.


import numpy as np
import os
import cv2
def noisy(noise_typ,image):
   if noise_typ == "gauss":
      row,col,ch= image.shape
      mean = 0
      var = 0.1
      sigma = var**0.5
      gauss = np.random.normal(mean,sigma,(row,col,ch))
      gauss = gauss.reshape(row,col,ch)
      noisy = image + gauss
      return noisy
   elif noise_typ == "s&p":
      row,col,ch = image.shape
      s_vs_p = 0.5
      amount = 0.004
      out = np.copy(image)
      # Salt mode
      num_salt = np.ceil(amount * image.size * s_vs_p)
      coords = [np.random.randint(0, i - 1, int(num_salt))
              for i in image.shape]
      out[coords] = 1

      # Pepper mode
      num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
      coords = [np.random.randint(0, i - 1, int(num_pepper))
              for i in image.shape]
      out[coords] = 0
      return out
  elif noise_typ == "poisson":
      vals = len(np.unique(image))
      vals = 2 ** np.ceil(np.log2(vals))
      noisy = np.random.poisson(image * vals) / float(vals)
      return noisy
  elif noise_typ =="speckle":
      row,col,ch = image.shape
      gauss = np.random.randn(row,col,ch)
      gauss = gauss.reshape(row,col,ch)        
      noisy = image + image * gauss
      return noisy

回答by ppk28

I don't know is there any method in Python API.But you can use this simple code to add Salt-and-Pepper noise to an image.

我不知道 Python API 中是否有任何方法。但是您可以使用这个简单的代码将椒盐噪声添加到图像中。

import numpy as np
import random
import cv2

def sp_noise(image,prob):
    '''
    Add salt and pepper noise to image
    prob: Probability of the noise
    '''
    output = np.zeros(image.shape,np.uint8)
    thres = 1 - prob 
    for i in range(image.shape[0]):
        for j in range(image.shape[1]):
            rdn = random.random()
            if rdn < prob:
                output[i][j] = 0
            elif rdn > thres:
                output[i][j] = 255
            else:
                output[i][j] = image[i][j]
    return output

image = cv2.imread('image.jpg',0) # Only for grayscale image
noise_img = sp_noise(image,0.05)
cv2.imwrite('sp_noise.jpg', noise_img)

回答by berak

just look at cv2.randu()or cv.randn(), it's all pretty similar to matlab already, i guess.

看看cv2.randu()或 cv.randn(),我猜它已经和 matlab 非常相似了。

let's play a bit ;) :

让我们玩一下;) :

import cv2
import numpy as np

>>> im = np.empty((5,5), np.uint8) # needs preallocated input image
>>> im
array([[248, 168,  58,   2,   1],  # uninitialized memory counts as random, too ?  fun ;) 
       [  0, 100,   2,   0, 101],
       [  0,   0, 106,   2,   0],
       [131,   2,   0,  90,   3],
       [  0, 100,   1,   0,  83]], dtype=uint8)
>>> im = np.zeros((5,5), np.uint8) # seriously now.
>>> im
array([[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0]], dtype=uint8)
>>> cv2.randn(im,(0),(99))         # normal
array([[  0,  76,   0, 129,   0],
       [  0,   0,   0, 188,  27],
       [  0, 152,   0,   0,   0],
       [  0,   0, 134,  79,   0],
       [  0, 181,  36, 128,   0]], dtype=uint8)
>>> cv2.randu(im,(0),(99))         # uniform
array([[19, 53,  2, 86, 82],
       [86, 73, 40, 64, 78],
       [34, 20, 62, 80,  7],
       [24, 92, 37, 60, 72],
       [40, 12, 27, 33, 18]], dtype=uint8)

to apply it to an existing image, just generate noise in the desired range, and add it:

要将其应用于现有图像,只需在所需范围内生成噪声,然后添加它:

img = ...
noise = ...

image = img + noise