使用 Pandas 将 CSV 读入具有不同行长的数据帧

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/55129640/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 06:20:34  来源:igfitidea点击:

Read CSV into a dataFrame with varying row lengths using Pandas

pythonpandascsvdataframe

提问by caaax

So I have a CSV that looks a bit like this:

所以我有一个 CSV 看起来有点像这样:

1 | 01-01-2019 | 724
2 | 01-01-2019 | 233 | 436
3 | 01-01-2019 | 345
4 | 01-01-2019 | 803 | 933 | 943 | 923 | 954
5 | 01-01-2019 | 454
...

And when I try to use the following code to generate a dataFrame..

当我尝试使用以下代码生成数据帧时..

df = pd.read_csv('data.csv', header=0, engine='c', error_bad_lines=False)

It only adds rows with 3 columns to the df (rows 1, 3 and 5 from above)

它只将 3 列的行添加到 df(上面的第 1、3 和 5 行)

The rest are considered 'bad lines' giving me the following error:

其余的被认为是“坏线”给我以下错误:

Skipping line 17467: expected 3 fields, saw 9

How do I create a data frame that includes alldata in my csv, possibly just filling in the empty cells with null? Or do I have to declare the max row length prior to adding to the df?

如何创建一个包含csv 中所有数据的数据框,可能只是用 null 填充空单元格?或者我是否必须在添加到 df 之前声明最大行长度?

Thanks!

谢谢!

回答by ALollz

If using only pandas, read in lines, deal with the separator after.

如果只使用pandas,则逐行读取,然后处理分隔符。

import pandas as pd

df = pd.read_csv('data.csv', header=None, sep='\n')
df = df[0].str.split('\s\|\s', expand=True)

   0           1    2     3     4     5     6
0  1  01-01-2019  724  None  None  None  None
1  2  01-01-2019  233   436  None  None  None
2  3  01-01-2019  345  None  None  None  None
3  4  01-01-2019  803   933   943   923   954
4  5  01-01-2019  454  None  None  None  None

回答by unutbu

If you know that the data contains Ncolumns, you can tell Pandas in advance how many columns to expect via the namesparameter:

如果您知道数据包含N列,您可以通过names参数提前告诉 Pandas 需要多少列:

import pandas as pd
df = pd.read_csv('data', delimiter='|', names=list(range(7)))
print(df)

yields

产量

   0             1    2      3      4      5      6
0  1   01-01-2019   724    NaN    NaN    NaN    NaN
1  2   01-01-2019   233  436.0    NaN    NaN    NaN
2  3   01-01-2019   345    NaN    NaN    NaN    NaN
3  4   01-01-2019   803  933.0  943.0  923.0  954.0
4  5   01-01-2019   454    NaN    NaN    NaN    NaN

If you have an the upper limit, N, on the number of columns, then you can have Pandas read Ncolumns and then use dropnato drop completely empty columns:

如果您有一个上限,N, 列数,那么您可以让 Pandas 读取N列,然后用于dropna删除完全空的列:

import pandas as pd
df = pd.read_csv('data', delimiter='|', names=list(range(20))).dropna(axis='columns', how='all')
print(df)

yields

产量

   0             1    2      3      4      5      6
0  1   01-01-2019   724    NaN    NaN    NaN    NaN
1  2   01-01-2019   233  436.0    NaN    NaN    NaN
2  3   01-01-2019   345    NaN    NaN    NaN    NaN
3  4   01-01-2019   803  933.0  943.0  923.0  954.0
4  5   01-01-2019   454    NaN    NaN    NaN    NaN

Note that this could drop columns from the middle of the data set (not just columns from the right-hand side) if they are completely empty.

请注意,如果它们完全为空,这可能会从数据集的中间删除列(不仅仅是右侧的列)。

回答by Yo_Chris

Read fixed width should work:

读取固定宽度应该有效:

from io import StringIO

s = '''1  01-01-2019  724
2  01-01-2019  233  436
3  01-01-2019  345
4  01-01-2019  803  933  943  923  954
5  01-01-2019  454'''


pd.read_fwf(StringIO(s), header=None)

   0           1    2      3      4      5      6
0  1  01-01-2019  724    NaN    NaN    NaN    NaN
1  2  01-01-2019  233  436.0    NaN    NaN    NaN
2  3  01-01-2019  345    NaN    NaN    NaN    NaN
3  4  01-01-2019  803  933.0  943.0  923.0  954.0
4  5  01-01-2019  454    NaN    NaN    NaN    NaN

or with a delimiterparam

或带有delimiter参数

s = '''1 | 01-01-2019 | 724
2 | 01-01-2019 | 233 | 436
3 | 01-01-2019 | 345
4 | 01-01-2019 | 803 | 933 | 943 | 923 | 954
5 | 01-01-2019 | 454'''


pd.read_fwf(StringIO(s), header=None, delimiter='|')

   0             1    2      3      4      5      6
0  1   01-01-2019   724    NaN    NaN    NaN    NaN
1  2   01-01-2019   233  436.0    NaN    NaN    NaN
2  3   01-01-2019   345    NaN    NaN    NaN    NaN
3  4   01-01-2019   803  933.0  943.0  923.0  954.0
4  5   01-01-2019   454    NaN    NaN    NaN    NaN

note that for your actual file you will not use StringIOyou would just replace that with your file path: pd.read_fwf('data.csv', delimiter='|', header=None)

请注意,对于您不会使用的实际文件,您StringIO只需将其替换为您的文件路径:pd.read_fwf('data.csv', delimiter='|', header=None)

回答by jfaccioni

add extra columns (empty or otherwise) to the top of your csv file. Pandas will takes the first row as the default size, and anything below it will have NaN values. Example:

在 csv 文件的顶部添加额外的列(空或其他)。Pandas 将第一行作为默认大小,它下面的任何内容都将具有 NaN 值。例子:

file.csv:

文件.csv:

a,b,c,d,e
1,2,3
3
2,3,4

code:

代码:

>>> import pandas as pd
>>> pd.read_csv('file.csv')
   a    b    c   d   e
0  1  2.0  3.0 NaN NaN
1  3  NaN  NaN NaN NaN
2  2  3.0  4.0 NaN NaN

回答by Rich Andrews

Consider using Python csvto do the lifting for importing data and format grooming. You can implement a custom dialect to handle varying csv-ness.

考虑使用 Pythoncsv来完成导入数据和格式整理的工作。您可以实现自定义方言来处理不同的 csv-ness。

import csv
import pandas as pd

csv_data = """1 | 01-01-2019 | 724
2 | 01-01-2019 | 233 | 436
3 | 01-01-2019 | 345
4 | 01-01-2019 | 803 | 933 | 943 | 923 | 954
5 | 01-01-2019 | 454"""

with open('test1.csv', 'w') as f:
    f.write(csv_data)

csv.register_dialect('PipeDialect', delimiter='|')
with open('test1.csv') as csvfile:
    data = [row for row in csv.reader(csvfile, 'PipeDialect')]
df = pd.DataFrame(data = data)

Gives you a csv import dialect and the following DataFrame:

为您提供 csv 导入方言和以下 DataFrame:

    0             1      2      3      4      5     6
0  1    01-01-2019     724   None   None   None  None
1  2    01-01-2019    233     436   None   None  None
2  3    01-01-2019     345   None   None   None  None
3  4    01-01-2019    803    933    943    923    954
4  5    01-01-2019     454   None   None   None  None

Left as an exercise is handling the whitespace padding in the input file.

剩下的练习是处理输入文件中的空白填充。

回答by phoenixio

colnames= [str(i) for i in range(9)]
df = pd.read_table('data.csv', header=None, sep=',', names=colnames)

Change 9in colnames to number xif code gives the error

如果代码给出错误9,则将列名更改为数字x

Skipping line 17467: expected 3 fields, saw x