Python 合并两个具有相同索引的 Pandas 数据帧

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/28773683/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 03:44:08  来源:igfitidea点击:

Combine two Pandas dataframes with the same index

pythonpandas

提问by alexsalo

I have two dataframes with the same index but different columns. How do I combine them into one with the same index but containing all the columns?

我有两个具有相同索引但不同列的数据框。如何将它们合并为一个具有相同索引但包含所有列的?

I have:

我有:

  A 
1 10 
2 11

  B
1 20
2 21

and I need the following output:

我需要以下输出:

  A  B
1 10 20
2 11 21

采纳答案by BrenBarn

pandas.concat([df1, df2], axis=1)

回答by andrewwowens

You've got a few options depending on how complex the dataframe is:

根据数据框的复杂程度,您有几个选项:

Option 1:

选项1:

df1.join(df2, how='outer')

Option 2:

选项 2:

pd.merge(df1, df2, left_index=True, right_index=True, how='outer')