Python 如何将列和行的 Pandas DataFrame 子集转换为 numpy 数组?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/17682613/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 08:54:22  来源:igfitidea点击:

How to convert a pandas DataFrame subset of columns AND rows into a numpy array?

pythonarraysnumpypandasscikit-learn

提问by John Prior

I'm wondering if there is a simpler, memory efficient way to select a subset of rows and columns from a pandas DataFrame.

我想知道是否有一种更简单、内存高效的方法来从 Pandas DataFrame 中选择行和列的子集。

For instance, given this dataframe:

例如,给定这个数据框:

df = DataFrame(np.random.rand(4,5), columns = list('abcde'))
print df

          a         b         c         d         e
0  0.945686  0.000710  0.909158  0.892892  0.326670
1  0.919359  0.667057  0.462478  0.008204  0.473096
2  0.976163  0.621712  0.208423  0.980471  0.048334
3  0.459039  0.788318  0.309892  0.100539  0.753992

I want only those rows in which the value for column 'c' is greater than 0.5, but I only need columns 'b' and 'e' for those rows.

我只需要列 'c' 的值大于 0.5 的那些行,但我只需要这些行的列 'b' 和 'e'。

This is the method that I've come up with - perhaps there is a better "pandas" way?

这是我想出的方法 - 也许有更好的“熊猫”方法?

locs = [df.columns.get_loc(_) for _ in ['a', 'd']]
print df[df.c > 0.5][locs]

          a         d
0  0.945686  0.892892

My final goal is to convert the result to a numpy array to pass into an sklearn regression algorithm, so I will use the code above like this:

我的最终目标是将结果转换为 numpy 数组以传递给 sklearn 回归算法,因此我将像这样使用上面的代码:

training_set = array(df[df.c > 0.5][locs])

... and that peeves me since I end up with a huge array copy in memory. Perhaps there's a better way for that too?

...这让我很恼火,因为我最终在内存中得到了一个巨大的数组副本。也许还有更好的方法?

采纳答案by Jeff

.locaccept row and column selectors simultaneously (as do .ix/.ilocFYI) This is done in a single pass as well.

.loc同时接受行和列选择器(.ix/.iloc仅供参考)这也是一次性完成的。

In [1]: df = DataFrame(np.random.rand(4,5), columns = list('abcde'))

In [2]: df
Out[2]: 
          a         b         c         d         e
0  0.669701  0.780497  0.955690  0.451573  0.232194
1  0.952762  0.585579  0.890801  0.643251  0.556220
2  0.900713  0.790938  0.952628  0.505775  0.582365
3  0.994205  0.330560  0.286694  0.125061  0.575153

In [5]: df.loc[df['c']>0.5,['a','d']]
Out[5]: 
          a         d
0  0.669701  0.451573
1  0.952762  0.643251
2  0.900713  0.505775

And if you want the values (though this should pass directly to sklearn as is); frames support the array interface

如果你想要这些值(尽管这应该直接传递给 sklearn);框架支持阵列接口

In [6]: df.loc[df['c']>0.5,['a','d']].values
Out[6]: 
array([[ 0.66970138,  0.45157274],
       [ 0.95276167,  0.64325143],
       [ 0.90071271,  0.50577509]])

回答by waitingkuo

Use its value directly:

直接使用它的值:

In [79]: df[df.c > 0.5][['b', 'e']].values
Out[79]: 
array([[ 0.98836259,  0.82403141],
       [ 0.337358  ,  0.02054435],
       [ 0.29271728,  0.37813099],
       [ 0.70033513,  0.69919695]])

回答by Daniel

Perhaps something like this for the first problem, you can simply access the columns by their names:

对于第一个问题,也许像这样,您可以简单地按列名访问列:

>>> df = pd.DataFrame(np.random.rand(4,5), columns = list('abcde'))
>>> df[df['c']>.5][['b','e']]
          b         e
1  0.071146  0.132145
2  0.495152  0.420219

For the second problem:

对于第二个问题:

>>> df[df['c']>.5][['b','e']].values
array([[ 0.07114556,  0.13214495],
       [ 0.49515157,  0.42021946]])