Pandas 在行上设置多索引,然后转置到列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/38980714/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 01:50:14  来源:igfitidea点击:

Pandas setting multi-index on rows, then transposing to columns

pythonpandasdataframetransposemulti-index

提问by sheridp

If I have a simple dataframe:

如果我有一个简单的数据框:

print(a)

  one  two three
0   A    1     a
1   A    2     b
2   B    1     c
3   B    2     d
4   C    1     e
5   C    2     f

I can easily create a multi-index on the rows by issuing:

我可以通过发出以下命令轻松地在行上创建多索引:

a.set_index(['one', 'two'])

        three
one two      
A   1       a
    2       b
B   1       c
    2       d
C   1       e
    2       f

Is there a similarly easy way to create a multi-index on the columns?

是否有类似的简单方法在列上创建多索引?

I'd like to end up with:

我想结束:

    one A       B       C   
    two 1   2   1   2   1   2
    0   a   b   c   d   e   f

In this case, it would be pretty simple to create the row multi-index and then transpose it, but in other examples, I'll be wanting to create a multi-index on both the rows and columns.

在这种情况下,创建行多索引然后转置它会非常简单,但在其他示例中,我将要在行和列上创建多索引。

采纳答案by piRSquared

Yes! It's called transposition.

是的!这叫做转位。

a.set_index(['one', 'two']).T

enter image description here

在此处输入图片说明



Let's borrow from @ragesz's post because they used a much better example to demonstrate with.

让我们借用@ragesz 的帖子,因为他们使用了一个更好的例子来演示。

df = pd.DataFrame({'a':['foo_0', 'bar_0', 1, 2, 3], 'b':['foo_0', 'bar_1', 11, 12, 13],
    'c':['foo_1', 'bar_0', 21, 22, 23], 'd':['foo_1', 'bar_1', 31, 32, 33]})

df.T.set_index([0, 1]).T

enter image description here

在此处输入图片说明

回答by Nickil Maveli

You could use pivot_tablefollowed by a series of manipulations on the dataframe to get the desired form:

您可以使用pivot_table后跟对数据框的一系列操作来获得所需的形式:

df_pivot = pd.pivot_table(df, index=['one', 'two'], values='three', aggfunc=np.sum)

def rename_duplicates(old_list):    # Replace duplicates in the index with an empty string
    seen = {}
    for x in old_list:
        if x in seen:
            seen[x] += 1
            yield " " 
        else:
            seen[x] = 0
            yield x

col_group = df_pivot.unstack().stack().reset_index(level=-1)
col_group.index = rename_duplicates(col_group.index.tolist())
col_group.index.name = df_pivot.index.names[0]
col_group.T

one  A     B     C   
two  1  2  1  2  1  2
0    a  b  c  d  e  f

回答by ragesz

I think the short answer is NO. To have multi-index columns, the dataframe should have two (or more) rows to be converted into headers (like columns for multi-index rows). If you have this kind of dataframe, creating multi-index header is not so difficult. It can be done in a very long line of code, and you can reuse it at any other dataframe, only the row numbers of the headers should be kept in mind & change if differs:

我认为简短的回答是否定的。要拥有多索引列,数据框应该有两(或更多)行要转换为标题(如多索引行的列)。如果您有这种数据帧,创建多索引标头就不是那么困难了。它可以在很长的代码行中完成,您可以在任何其他数据帧中重用它,只应记住标题的行号并在不同时更改:

df = pd.DataFrame({'a':['foo_0', 'bar_0', 1, 2, 3], 'b':['foo_0', 'bar_1', 11, 12, 13],
    'c':['foo_1', 'bar_0', 21, 22, 23], 'd':['foo_1', 'bar_1', 31, 32, 33]})

The dataframe:

数据框:

       a      b      c      d
0  foo_0  foo_0  foo_1  foo_1
1  bar_0  bar_1  bar_0  bar_1
2      1     11     21     31
3      2     12     22     32
4      3     13     23     33

Creating multi-index object:

创建多索引对象:

arrays = [df.iloc[0].tolist(), df.iloc[1].tolist()]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

df.columns = index

Multi-index header result:

多索引头结果:

first   foo_0         foo_1       
second  bar_0  bar_1  bar_0  bar_1
0       foo_0  foo_0  foo_1  foo_1
1       bar_0  bar_1  bar_0  bar_1
2           1     11     21     31
3           2     12     22     32
4           3     13     23     33

Finally we need to drop 0-1 rows then reset the row index:

最后我们需要删除 0-1 行然后重置行索引:

df = df.iloc[2:].reset_index(drop=True)

The "one-line" version (only thing you have to change is to specify header indexes and the dataframe itself):

“一行”版本(您唯一需要更改的是指定标头索引和数据帧本身):

idx_first_header = 0
idx_second_header = 1

df.columns = pd.MultiIndex.from_tuples(list(zip(*[df.iloc[idx_first_header].tolist(),
    df.iloc[idx_second_header].tolist()])), names=['first', 'second'])

df = df.drop([idx_first_header, idx_second_header], axis=0).reset_index(drop=True)