Python 检查特定值(在单元格中)是否在 Pandas DataFrame 中为 NaN 无法使用 ix 或 iloc

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/47440077/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 18:12:24  来源:igfitidea点击:

Checking if particular value (in cell) is NaN in pandas DataFrame not working using ix or iloc

pythonpandasdataframenan

提问by Cedric Zoppolo

Lets say I have following pandasDataFrame:

可以说我有以下几点pandasDataFrame

import pandas as pd
df = pd.DataFrame({"A":[1,pd.np.nan,2], "B":[5,6,0]})

Which would look like:

看起来像:

>>> df
     A  B
0  1.0  5
1  NaN  6
2  2.0  0

First option

第一个选项

I know one way to check if a particular value is NaN, which is as follows:

我知道一种检查特定值是否NaN为 的方法,如下所示:

>>> df.isnull().ix[1,0]
True

Second option (not working)

第二个选项(不工作)

I thought below option, using ix, would work as well, but it's not:

我认为下面的选项,使用ix, 也可以,但事实并非如此:

>>> df.ix[1,0]==pd.np.nan
False

I also tried ilocwith same results:

我也尝试iloc过相同的结果:

>>> df.iloc[1,0]==pd.np.nan
False

However if I check for those values using ixor ilocI get:

但是,如果我使用ix或检查这些值,iloc我会得到:

>>> df.ix[1,0]
nan
>>> df.iloc[1,0]
nan

So, why is the second option not working?Is it possible to check for NaNvalues using ixor iloc?

那么,为什么第二个选项不起作用?是否可以NaN使用ix或检查值iloc

回答by MaxU

Try this:

尝试这个:

In [107]: pd.isnull(df.iloc[1,0])
Out[107]: True


UPDATE:in a newer Pandas versions use pd.isna():

更新:在较新的 Pandas 版本中使用pd.isna()

In [7]: pd.isna(df.iloc[1,0])
Out[7]: True

回答by hygull

The above answer is excellent. Here is the same with an example for better understanding.

楼上的回答太好了。为了更好地理解,这里有一个例子。

>>> import pandas as pd
>>>
>>> import numpy as np
>>>
>>> pd.Series([np.nan, 34, 56])
0     NaN
1    34.0
2    56.0
dtype: float64
>>>
>>> s = pd.Series([np.nan, 34, 56])
>>> pd.isnull(s[0])
True
>>>

I also tried couple of times, the following trials did not work. Thanks to @MaxU.

我也试过几次,下面的试验没有奏效。感谢@MaxU.

>>> s[0]
nan
>>>
>>> s[0] == np.nan
False
>>>
>>> s[0] is np.nan
False
>>>
>>> s[0] == 'nan'
False
>>>
>>> s[0] == pd.np.nan
False
>>>

回答by Prateek Kumar Dalbehera

pd.isna(cell_value)can be used to check if a given cell value is nan. Alternatively, pd.notna(cell_value)to check the opposite.

pd.isna(cell_value)可用于检查给定的单元格值是否为 nan。或者,pd.notna(cell_value)检查相反。

From source code of pandas:

来自熊猫的源代码:

def isna(obj):
    """
    Detect missing values for an array-like object.

    This function takes a scalar or array-like object and indicates
    whether values are missing (``NaN`` in numeric arrays, ``None`` or ``NaN``
    in object arrays, ``NaT`` in datetimelike).

    Parameters
    ----------
    obj : scalar or array-like
        Object to check for null or missing values.

    Returns
    -------
    bool or array-like of bool
        For scalar input, returns a scalar boolean.
        For array input, returns an array of boolean indicating whether each
        corresponding element is missing.

    See Also
    --------
    notna : Boolean inverse of pandas.isna.
    Series.isna : Detect missing values in a Series.
    DataFrame.isna : Detect missing values in a DataFrame.
    Index.isna : Detect missing values in an Index.

    Examples
    --------
    Scalar arguments (including strings) result in a scalar boolean.

    >>> pd.isna('dog')
    False

    >>> pd.isna(np.nan)
    True