pandas 跨数据框列应用模糊匹配并将结果保存在新列中
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/38577332/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Apply fuzzy matching across a dataframe column and save results in a new column
提问by Jstuff
I have two data frames with each having a different number of rows. Below is a couple rows from each data set
我有两个数据框,每个数据框都有不同的行数。下面是每个数据集中的几行
df1 =
Company City State ZIP
FREDDIE LEES AMERICAN GOURMET SAUCE St. Louis MO 63101
CITYARCHRIVER 2015 FOUNDATION St. Louis MO 63102
GLAXOSMITHKLINE CONSUMER HEALTHCARE St. Louis MO 63102
LACKEY SHEET METAL St. Louis MO 63102
and
和
df2 =
FDA Company FDA City FDA State FDA ZIP
LACKEY SHEET METAL St. Louis MO 63102
PRIMUS STERILIZER COMPANY LLC Great Bend KS 67530
HELGET GAS PRODUCTS INC Omaha NE 68127
ORTHOQUEST LLC La Vista NE 68128
I joined them side by side using combined_data = pandas.concat([df1, df2], axis = 1)
. My next goal is to compare each string under df1['Company']
to each string under in df2['FDA Company']
using several different matching commands from the fuzzy wuzzy
module and return the value of the best match and its name. I want to store that in a new column. For example if I did the fuzz.ratio
and fuzz.token_sort_ratio
on LACKY SHEET METAL
in df1['Company']
to df2['FDA Company']
it would return that the best match was LACKY SHEET METAL
with a score of 100
and this would then be saved under a new column in combined data
. It results would look like
我使用combined_data = pandas.concat([df1, df2], axis = 1)
. 我的下一个目标是使用模块中的几个不同匹配命令将下的每个字符串与下df1['Company']
的每个字符串进行比较,并返回最佳匹配的值及其名称。我想将它存储在一个新列中。举例来说,如果我做了,并在中到它会返回最匹配的是一个得分,这将随后在新列下保存。结果看起来像df2['FDA Company']
fuzzy wuzzy
fuzz.ratio
fuzz.token_sort_ratio
LACKY SHEET METAL
df1['Company']
df2['FDA Company']
LACKY SHEET METAL
100
combined data
combined_data =
Company City State ZIP FDA Company FDA City FDA State FDA ZIP fuzzy.token_sort_ratio match fuzzy.ratio match
FREDDIE LEES AMERICAN GOURMET SAUCE St. Louis MO 63101 LACKEY SHEET METAL St. Louis MO 63102 LACKEY SHEET METAL 100 LACKEY SHEET METAL 100
CITYARCHRIVER 2015 FOUNDATION St. Louis MO 63102 PRIMUS STERILIZER COMPANY LLC Great Bend KS 67530
GLAXOSMITHKLINE CONSUMER HEALTHCARE St. Louis MO 63102 HELGET GAS PRODUCTS INC Omaha NE 68127
LACKEY SHEET METAL St. Louis MO 63102 ORTHOQUEST LLC La Vista NE 68128
I tried doing
我试着做
combined_data['name_ratio'] = combined_data.apply(lambda x: fuzz.ratio(x['Company'], x['FDA Company']), axis = 1)
But got an error because the lengths of the columns are different.
但是由于列的长度不同而出错。
I am stumped. How I can accomplish this?
我难住了。我怎样才能做到这一点?
回答by piRSquared
I couldn't tell what you were doing. This is how I would do it.
我不知道你在做什么。这就是我要做的。
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
Create a series of tuples to compare:
创建一系列要比较的元组:
compare = pd.MultiIndex.from_product([df1['Company'],
df2['FDA Company']]).to_series()
Create a special function to calculate fuzzy metrics and return a series.
创建一个特殊的函数来计算模糊度量并返回一个系列。
def metrics(tup):
return pd.Series([fuzz.ratio(*tup),
fuzz.token_sort_ratio(*tup)],
['ratio', 'token'])
Apply metrics
to the compare
series
适用metrics
于compare
系列
compare.apply(metrics)
There are bunch of ways to do this next part:
有很多方法可以完成下一部分:
Get closest matches to each row of df1
获取与每一行最接近的匹配 df1
compare.apply(metrics).unstack().idxmax().unstack(0)
Get closest matches to each row of df2
获取与每一行最接近的匹配 df2
compare.apply(metrics).unstack(0).idxmax().unstack(0)