Python Numpy 仅按行 shuffle 多维数组,保持列顺序不变

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/35646908/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 16:45:04  来源:igfitidea点击:

Numpy shuffle multidimensional array by row only, keep column order unchanged

pythonarraysnumpyshuffle

提问by robert

How can I shuffle a multidimensional array by row only in Python (so do not shuffle the columns).

如何仅在 Python 中按行对多维数组进行混洗(因此不要对列进行混洗)。

I am looking for the most efficient solution, because my matrix is very huge. Is it also possible to do this highly efficient on the original array (to save memory)?

我正在寻找最有效的解决方案,因为我的矩阵非常大。是否也可以在原始数组上高效地执行此操作(以节省内存)?

Example:

例子:

import numpy as np
X = np.random.random((6, 2))
print(X)
Y = ???shuffle by row only not colls???
print(Y)

What I expect now is original matrix:

我现在期望的是原始矩阵:

[[ 0.48252164  0.12013048]
 [ 0.77254355  0.74382174]
 [ 0.45174186  0.8782033 ]
 [ 0.75623083  0.71763107]
 [ 0.26809253  0.75144034]
 [ 0.23442518  0.39031414]]

Output shuffle the rows not cols e.g.:

输出打乱行而不是列,例如:

[[ 0.45174186  0.8782033 ]
 [ 0.48252164  0.12013048]
 [ 0.77254355  0.74382174]
 [ 0.75623083  0.71763107]
 [ 0.23442518  0.39031414]
 [ 0.26809253  0.75144034]]

采纳答案by Kasramvd

That's what numpy.random.shuffle()is for :

numpy.random.shuffle()就是为了:

>>> X = np.random.random((6, 2))
>>> X
array([[ 0.9818058 ,  0.67513579],
       [ 0.82312674,  0.82768118],
       [ 0.29468324,  0.59305925],
       [ 0.25731731,  0.16676408],
       [ 0.27402974,  0.55215778],
       [ 0.44323485,  0.78779887]])

>>> np.random.shuffle(X)
>>> X
array([[ 0.9818058 ,  0.67513579],
       [ 0.44323485,  0.78779887],
       [ 0.82312674,  0.82768118],
       [ 0.29468324,  0.59305925],
       [ 0.25731731,  0.16676408],
       [ 0.27402974,  0.55215778]])

回答by Divakar

You can also use np.random.permutationto generate random permutation of row indices and then index into the rows of Xusing np.takewith axis=0. Also, np.takefacilitates overwriting to the input array Xitself with out=option, which would save us memory. Thus, the implementation would look like this -

您还可以使用np.random.permutation生成行索引的随机排列,然后索引到Xusing np.takewith的行中axis=0。此外,使用选项np.take有助于覆盖输入数组X本身out=,这将节省我们的内存。因此,实现看起来像这样 -

np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X)

Sample run -

样品运行 -

In [23]: X
Out[23]: 
array([[ 0.60511059,  0.75001599],
       [ 0.30968339,  0.09162172],
       [ 0.14673218,  0.09089028],
       [ 0.31663128,  0.10000309],
       [ 0.0957233 ,  0.96210485],
       [ 0.56843186,  0.36654023]])

In [24]: np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X);

In [25]: X
Out[25]: 
array([[ 0.14673218,  0.09089028],
       [ 0.31663128,  0.10000309],
       [ 0.30968339,  0.09162172],
       [ 0.56843186,  0.36654023],
       [ 0.0957233 ,  0.96210485],
       [ 0.60511059,  0.75001599]])

Additional performance boost

额外的性能提升

Here's a trick to speed up np.random.permutation(X.shape[0])with np.argsort()-

这里有一个窍门,以加快np.random.permutation(X.shape[0])np.argsort()-

np.random.rand(X.shape[0]).argsort()

Speedup results -

加速结果 -

In [32]: X = np.random.random((6000, 2000))

In [33]: %timeit np.random.permutation(X.shape[0])
1000 loops, best of 3: 510 μs per loop

In [34]: %timeit np.random.rand(X.shape[0]).argsort()
1000 loops, best of 3: 297 μs per loop

Thus, the shuffling solution could be modified to -

因此,洗牌解决方案可以修改为 -

np.take(X,np.random.rand(X.shape[0]).argsort(),axis=0,out=X)


Runtime tests -

运行时测试 -

These tests include the two approaches listed in this post and np.shufflebased one in @Kasramvd's solution.

这些测试包括本文中列出的两种方法并np.shuffle基于@Kasramvd's solution.

In [40]: X = np.random.random((6000, 2000))

In [41]: %timeit np.random.shuffle(X)
10 loops, best of 3: 25.2 ms per loop

In [42]: %timeit np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X)
10 loops, best of 3: 53.3 ms per loop

In [43]: %timeit np.take(X,np.random.rand(X.shape[0]).argsort(),axis=0,out=X)
10 loops, best of 3: 53.2 ms per loop

So, it seems using these np.takebased could be used only if memory is a concern or else np.random.shufflebased solution looks like the way to go.

因此,似乎np.take仅当内存是一个问题时才可以使用这些基于np.random.shuffle的解决方案,否则基于解决方案看起来像是要走的路。

回答by Janmejaya Nanda

After a bit experiment i found most memory and time efficient way to shuffle data(row wise) of nd-array is, shuffle the index and get the data from shuffled index

经过一些实验,我发现对 nd-array 的数据(按行)进行混洗的最有效的内存和时间方法是,对索引进行混洗并从混洗后的索引中获取数据

rand_num2 = np.random.randint(5, size=(6000, 2000))
perm = np.arange(rand_num2.shape[0])
np.random.shuffle(perm)
rand_num2 = rand_num2[perm]

in more details
Here, I am using memory_profilerto find memory usage and python's builtin "time" module to record time and comparing all previous answers

更多细节
在这里,我使用memory_profiler来查找内存使用情况和 python 的内置“时间”模块来记录时间并比较所有以前的答案

def main():
    # shuffle data itself
    rand_num = np.random.randint(5, size=(6000, 2000))
    start = time.time()
    np.random.shuffle(rand_num)
    print('Time for direct shuffle: {0}'.format((time.time() - start)))

    # Shuffle index and get data from shuffled index
    rand_num2 = np.random.randint(5, size=(6000, 2000))
    start = time.time()
    perm = np.arange(rand_num2.shape[0])
    np.random.shuffle(perm)
    rand_num2 = rand_num2[perm]
    print('Time for shuffling index: {0}'.format((time.time() - start)))

    # using np.take()
    rand_num3 = np.random.randint(5, size=(6000, 2000))
    start = time.time()
    np.take(rand_num3, np.random.rand(rand_num3.shape[0]).argsort(), axis=0, out=rand_num3)
    print("Time taken by np.take, {0}".format((time.time() - start)))

Result for Time

时间结果

Time for direct shuffle: 0.03345608711242676   # 33.4msec
Time for shuffling index: 0.019818782806396484 # 19.8msec
Time taken by np.take, 0.06726956367492676     # 67.2msec

Memory profiler Result

内存分析器结果

Line #    Mem usage    Increment   Line Contents
================================================
    39  117.422 MiB    0.000 MiB   @profile
    40                             def main():
    41                                 # shuffle data itself
    42  208.977 MiB   91.555 MiB       rand_num = np.random.randint(5, size=(6000, 2000))
    43  208.977 MiB    0.000 MiB       start = time.time()
    44  208.977 MiB    0.000 MiB       np.random.shuffle(rand_num)
    45  208.977 MiB    0.000 MiB       print('Time for direct shuffle: {0}'.format((time.time() - start)))
    46                             
    47                                 # Shuffle index and get data from shuffled index
    48  300.531 MiB   91.555 MiB       rand_num2 = np.random.randint(5, size=(6000, 2000))
    49  300.531 MiB    0.000 MiB       start = time.time()
    50  300.535 MiB    0.004 MiB       perm = np.arange(rand_num2.shape[0])
    51  300.539 MiB    0.004 MiB       np.random.shuffle(perm)
    52  300.539 MiB    0.000 MiB       rand_num2 = rand_num2[perm]
    53  300.539 MiB    0.000 MiB       print('Time for shuffling index: {0}'.format((time.time() - start)))
    54                             
    55                                 # using np.take()
    56  392.094 MiB   91.555 MiB       rand_num3 = np.random.randint(5, size=(6000, 2000))
    57  392.094 MiB    0.000 MiB       start = time.time()
    58  392.242 MiB    0.148 MiB       np.take(rand_num3, np.random.rand(rand_num3.shape[0]).argsort(), axis=0, out=rand_num3)
    59  392.242 MiB    0.000 MiB       print("Time taken by np.take, {0}".format((time.time() - start)))

回答by Ben-Hur Cardoso

You can shuffle a two dimensional array Aby rowusing the np.vectorize()function:

您可以使用以下函数A按行对二维数组进行洗牌np.vectorize()

shuffle = np.vectorize(np.random.permutation, signature='(n)->(n)')

A_shuffled = shuffle(A)

回答by TassosK

I have a question on this (or maybe it is the answer) Lets say we have a numpy array X with shape=(1000,60,11,1) Also suppose that X is an array of images with size 60x11 and channel number =1 (60x11x1).

我对此有一个问题(或者可能是答案)假设我们有一个形状为 =(1000,60,11,1) 的 numpy 数组 X 还假设 X 是一个大小为 60x11 且通道数 = 的图像数组1 (60x11x1)。

What if I want to shuffle the order of all these images, and to do that I'll use shuffling on the indexes of X.

如果我想打乱所有这些图像的顺序怎么办,为此我将对 X 的索引使用打乱。

def shuffling( X):
 indx=np.arange(len(X))          # create a array with indexes for X data
 np.random.shuffle(indx)
 X=X[indx]
 return X

Will that work? From my knowledge len(X) will return the biggest dimension size.

那行得通吗?据我所知 len(X) 将返回最大的尺寸大小。

回答by Ghanem

I tried many solutions, and at the end I used this simple one:

我尝试了很多解决方案,最后我使用了这个简单的解决方案:

from sklearn.utils import shuffle
x = np.array([[1, 2],
              [3, 4],
              [5, 6]])
print(shuffle(x, random_state=0))

output:

输出:

[
[5 6]  
[3 4]  
[1 2]
]

if you have 3d array, loop through the 1st axis (axis=0) and apply this function, like:

如果您有 3d 数组,请遍历第一个轴(轴 = 0)并应用此函数,例如:

np.array([shuffle(item) for item in 3D_numpy_array])