Python sklearn-KMeans 如何获取每个簇中的样本/点

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/36195457/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 17:31:44  来源:igfitidea点击:

Python sklearn-KMeans how to get the samples/points in each clusters

pythonscikit-learnk-means

提问by user77005

I am using the sklearn.cluster KMeans package. Once I finish the clustering if I need to know which values were grouped together how can I do it?

我正在使用 sklearn.cluster KMeans 包。完成聚类后,如果我需要知道将哪些值组合在一起,我该怎么做?

Say I had 100 data points and KMeans gave me 5 cluster. Now I want to know which data points are in cluster 5. How can I do that.

假设我有 100 个数据点,KMeans 给了我 5 个集群。现在我想知道集群 5 中有哪些数据点。我该怎么做。

Is there a function to give the cluster id and it will list out all the data points in that cluster

是否有提供集群 ID 的函数,它会列出该集群中的所有数据点

Thanks.

谢谢。

回答by Praveen

I had a similar requirement and i am using pandas to create a new dataframe with the index of the dataset and the labels as columns.

我有一个类似的要求,我正在使用 Pandas 创建一个新的数据框,其中包含数据集的索引和标签作为列。

data = pd.read_csv('filename')

km = KMeans(n_clusters=5).fit(data)

cluster_map = pd.DataFrame()
cluster_map['data_index'] = data.index.values
cluster_map['cluster'] = km.labels_

Once the DataFrame is available is quite easy to filter, For example, to filter all data points in cluster 3

一旦DataFrame可用就很容易过滤,例如过滤集群3中的所有数据点

cluster_map[cluster_map.cluster == 3]

回答by Kevin

If you have a large dataset and you need to extract clusters on-demand you'll see some speed-up using numpy.where. Here is an example on the iris dataset:

如果您有一个大型数据集并且需要按需提取集群,您会发现使用numpy.where. 以下是 iris 数据集的示例:

from sklearn.cluster import KMeans
from sklearn import datasets
import numpy as np

centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target

km = KMeans(n_clusters=3)
km.fit(X)

Define a function to extract the indices of the cluster_id you provide. (Here are two functions, for benchmarking, they both return the same values):

定义一个函数来提取您提供的 cluster_id 的索引。(这里有两个函数,对于基准测试,它们都返回相同的值):

def ClusterIndicesNumpy(clustNum, labels_array): #numpy 
    return np.where(labels_array == clustNum)[0]

def ClusterIndicesComp(clustNum, labels_array): #list comprehension
    return np.array([i for i, x in enumerate(labels_array) if x == clustNum])

Let's say you want all samples that are in cluster 2:

假设您想要集群中的所有样本2

ClusterIndicesNumpy(2, km.labels_)
array([ 52,  77, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112,
       115, 116, 117, 118, 120, 122, 124, 125, 128, 129, 130, 131, 132,
       134, 135, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148])

Numpy wins the benchmark:

Numpy 赢得了基准测试:

%timeit ClusterIndicesNumpy(2,km.labels_)

100000 loops, best of 3: 4 μs per loop

%timeit ClusterIndicesComp(2,km.labels_)

1000 loops, best of 3: 479 μs per loop

Now you can extract all of your cluster 2 data points like so:

现在您可以像这样提取所有集群 2 数据点:

X[ClusterIndicesNumpy(2,km.labels_)]

array([[ 6.9,  3.1,  4.9,  1.5], 
       [ 6.7,  3. ,  5. ,  1.7],
       [ 6.3,  3.3,  6. ,  2.5], 
       ... #truncated

Double-check the first three indices from the truncated array above:

仔细检查上面截断数组中的前三个索引:

print X[52], km.labels_[52]
print X[77], km.labels_[77]
print X[100], km.labels_[100]

[ 6.9  3.1  4.9  1.5] 2
[ 6.7  3.   5.   1.7] 2
[ 6.3  3.3  6.   2.5] 2

回答by seralouk

To get the IDs of the points/samples/observations that are inside each cluster, do this:

要获取每个集群内的点/样本/观察的 ID,请执行以下操作:

Example using Iris data and a nice pythonic way:

使用 Iris 数据和一个不错的 Pythonic 方式的示例:

import numpy as np
from sklearn.cluster import KMeans
from sklearn import datasets

np.random.seed(0)

# Use Iris data
iris = datasets.load_iris()
X = iris.data
y = iris.target

# KMeans with 3 clusters
clf =  KMeans(n_clusters=3)
clf.fit(X,y)

#Coordinates of cluster centers with shape [n_clusters, n_features]
clf.cluster_centers_
#Labels of each point
clf.labels_

# Nice Pythonic way to get the indices of the points for each corresponding cluster
mydict = {i: np.where(clf.labels_ == i)[0] for i in range(clf.n_clusters)}

# Transform this dictionary into list (if you need a list as result)
dictlist = []
for key, value in mydict.iteritems():
    temp = [key,value]
    dictlist.append(temp)

RESULTS

结果

#dict format
{0: array([ 50,  51,  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,
            64,  65,  66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,
            78,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90,
            91,  92,  93,  94,  95,  96,  97,  98,  99, 101, 106, 113, 114,
           119, 121, 123, 126, 127, 133, 138, 142, 146, 149]),
 1: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
           17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
           34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]),
 2: array([ 52,  77, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112,
           115, 116, 117, 118, 120, 122, 124, 125, 128, 129, 130, 131, 132,
           134, 135, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148])}

# list format
[[0, array([ 50,  51,  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,
             64,  65,  66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,
             78,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90,
             91,  92,  93,  94,  95,  96,  97,  98,  99, 101, 106, 113, 114,
             119, 121, 123, 126, 127, 133, 138, 142, 146, 149])],
 [1, array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
            17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
            34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49])],
 [2, array([ 52,  77, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112,
             115, 116, 117, 118, 120, 122, 124, 125, 128, 129, 130, 131, 132,
             134, 135, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148])]]

回答by john gonidelis

Actually a very simple way to do this is:

实际上,一个非常简单的方法是:

clusters=KMeans(n_clusters=5)
df[clusters.labels_==0]

The second row returns all the elements of the dfthat belong to the 0th cluster. Similarly you can find the other cluster-elements.

第二行返回df属于0第 th 个簇的所有元素。同样,您可以找到其他簇元素。

回答by Farseer

You can look at attribute labels_

你可以看看属性 labels_

For example

例如

km = KMeans(2)
km.fit([[1,2,3],[2,3,4],[5,6,7]])
print km.labels_
output: array([1, 1, 0], dtype=int32)

As you can see first and second point is cluster 1, last point in cluster 0.

如您所见,第一个和第二个点是 cluster 1,最后一个点是 cluster 0

回答by Sandeep Shahi

You can Simply store the labels in an array. Convert the array to a data frame. Then Merge the data that you used to create K means with the new data frame with clusters.

您可以简单地将标签存储在数组中。将数组转换为数据框。然后将用于创建 K 均值的数据与带有簇的新数据框合并。

Display the dataframe. Now you should see the row with corresponding cluster. If you want to list all the data with specific cluster, use something like data.loc[data['cluster_label_name'] == 2], assuming 2 your cluster for now.

显示数据框。现在您应该看到具有相应集群的行。如果要列出具有特定集群的所有数据,请使用 data.loc[data['cluster_label_name'] == 2] 之类的内容,假设您的集群现在为 2。