Python 具有缺失值的列子集的行平均

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/34734940/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 15:26:31  来源:igfitidea点击:

Row-wise average for a subset of columns with missing values

pythonpandasdataframe

提问by scrollex

I've got a 'DataFrame` which has occasional missing values, and looks something like this:

我有一个“DataFrame”,它偶尔会丢失值,看起来像这样:

          Monday         Tuesday         Wednesday 
      ================================================
Mike        42             NaN               12
Jenna       NaN            NaN               15
Jon         21              4                 1

I'd like to add a new columnto my data frame where I'd calculate the average across all columnsfor every row.

我想column在我的数据框中添加一个新的,我将计算columns每个row.

Meaning, for Mike, I'd need (df['Monday'] + df['Wednesday'])/2, but for Jenna, I'd simply use df['Wednesday amt.']/1

意思是,对于Mike,我需要 (df['Monday'] + df['Wednesday'])/2,但是对于Jenna,我只是使用df['Wednesday amt.']/1

Does anyone know the best way to account for this variation that results from missing values and calculate the average?

有谁知道解决由缺失值引起的这种变化并计算平均值的最佳方法?

采纳答案by Stefan

You can simply:

您可以简单地:

df['avg'] = df.mean(axis=1)

       Monday  Tuesday  Wednesday        avg
Mike       42      NaN         12  27.000000
Jenna     NaN      NaN         15  15.000000
Jon        21        4          1   8.666667

because .mean()ignores missing values by default: see docs.

因为.mean()默认情况下忽略缺失值:请参阅 docs

To select a subset, you can:

要选择子集,您可以:

df['avg'] = df[['Monday', 'Tuesday']].mean(axis=1)

       Monday  Tuesday  Wednesday   avg
Mike       42      NaN         12  42.0
Jenna     NaN      NaN         15   NaN
Jon        21        4          1  12.5

回答by Amir F

Alternative - using iloc (can also use loc here):

替代方案 - 使用 iloc(也可以在此处使用 loc):

df['avg'] = df.iloc[:,0:2].mean(axis=1)