SQL 条件复杂的Spark SQL窗口函数
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/42448564/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Spark SQL window function with complex condition
提问by user4601931
This is probably easiest to explain through example. Suppose I have a DataFrame of user logins to a website, for instance:
这可能最容易通过示例来解释。假设我有一个用户登录网站的 DataFrame,例如:
scala> df.show(5)
+----------------+----------+
| user_name|login_date|
+----------------+----------+
|SirChillingtonIV|2012-01-04|
|Booooooo99900098|2012-01-04|
|Booooooo99900098|2012-01-06|
| OprahWinfreyJr|2012-01-10|
|SirChillingtonIV|2012-01-11|
+----------------+----------+
only showing top 5 rows
I would like to add to this a column indicating when they became an active user on the site. But there is one caveat: there is a time period during which a user is considered active, and after this period, if they log in again, their became_active
date resets. Suppose this period is 5 days. Then the desired table derived from the above table would be something like this:
我想添加一列,表明他们何时成为网站上的活跃用户。但有一个警告:用户在一段时间内被认为是活跃的,在这段时间之后,如果他们再次登录,他们的became_active
日期会重置。假设这个周期是5 天。那么从上表派生的所需表将是这样的:
+----------------+----------+-------------+
| user_name|login_date|became_active|
+----------------+----------+-------------+
|SirChillingtonIV|2012-01-04| 2012-01-04|
|Booooooo99900098|2012-01-04| 2012-01-04|
|Booooooo99900098|2012-01-06| 2012-01-04|
| OprahWinfreyJr|2012-01-10| 2012-01-10|
|SirChillingtonIV|2012-01-11| 2012-01-11|
+----------------+----------+-------------+
So, in particular, SirChillingtonIV's became_active
date was reset because their second login came after the active period expired, but Booooooo99900098's became_active
date was not reset the second time he/she logged in, because it fell within the active period.
所以,特别是,SirChillingtonIV 的became_active
日期被重置,因为他们第二次登录是在活动期到期后,但 Booooooo99900098 的became_active
日期在他/她第二次登录时没有被重置,因为它落在了活动期内。
My initial thought was to use window functions with lag
, and then using the lag
ged values to fill the became_active
column; for instance, something starting roughly like:
我最初的想法是使用带有 的窗口函数lag
,然后使用lag
ged 值来填充became_active
列;例如,开头大致如下:
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
val window = Window.partitionBy("user_name").orderBy("login_date")
val df2 = df.withColumn("tmp", lag("login_date", 1).over(window))
Then, the rule to fill in the became_active
date would be, if tmp
is null
(i.e., if it's the first ever login) or if login_date - tmp >= 5
then became_active = login_date
; otherwise, go to the next most recent value in tmp
and apply the same rule. This suggests a recursive approach, which I'm having trouble imagining a way to implement.
然后,填写became_active
日期的规则是,如果tmp
是null
(即,如果它是第一次登录)或如果login_date - tmp >= 5
则became_active = login_date
;否则,转到下一个最近的值tmp
并应用相同的规则。这表明了一种递归方法,我无法想象实现的方法。
My questions: Is this a viable approach, and if so, how can I "go back" and look at earlier values of tmp
until I find one where I stop? I can't, to my knowledge, iterate through values of a Spark SQL Column
. Is there another way to achieve this result?
我的问题:这是一种可行的方法tmp
吗?如果是,我如何“返回”并查看 的早期值,直到找到我停下来的地方?据我所知,我无法遍历 Spark SQL 的值Column
。有没有其他方法可以达到这个结果?
回答by zero323
Here is the trick. Import a bunch of functions:
这是诀窍。导入一堆函数:
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.{coalesce, datediff, lag, lit, min, sum}
Define windows:
定义窗口:
val userWindow = Window.partitionBy("user_name").orderBy("login_date")
val userSessionWindow = Window.partitionBy("user_name", "session")
Find the points where new sessions starts:
找到新会话开始的点:
val newSession = (coalesce(
datediff($"login_date", lag($"login_date", 1).over(userWindow)),
lit(0)
) > 5).cast("bigint")
val sessionized = df.withColumn("session", sum(newSession).over(userWindow))
Find the earliest date per session:
查找每个会话的最早日期:
val result = sessionized
.withColumn("became_active", min($"login_date").over(userSessionWindow))
.drop("session")
With dataset defined as:
数据集定义为:
val df = Seq(
("SirChillingtonIV", "2012-01-04"), ("Booooooo99900098", "2012-01-04"),
("Booooooo99900098", "2012-01-06"), ("OprahWinfreyJr", "2012-01-10"),
("SirChillingtonIV", "2012-01-11"), ("SirChillingtonIV", "2012-01-14"),
("SirChillingtonIV", "2012-08-11")
).toDF("user_name", "login_date")
The result is:
结果是:
+----------------+----------+-------------+
| user_name|login_date|became_active|
+----------------+----------+-------------+
| OprahWinfreyJr|2012-01-10| 2012-01-10|
|SirChillingtonIV|2012-01-04| 2012-01-04| <- The first session for user
|SirChillingtonIV|2012-01-11| 2012-01-11| <- The second session for user
|SirChillingtonIV|2012-01-14| 2012-01-11|
|SirChillingtonIV|2012-08-11| 2012-08-11| <- The third session for user
|Booooooo99900098|2012-01-04| 2012-01-04|
|Booooooo99900098|2012-01-06| 2012-01-04|
+----------------+----------+-------------+
回答by User12345
Refactoring the other answerto work with Pyspark
重构另一个答案以使用Pyspark
In Pyspark
you can do like below.
在Pyspark
你可以做如下。
create data frame
create data frame
df = sqlContext.createDataFrame(
[
("SirChillingtonIV", "2012-01-04"),
("Booooooo99900098", "2012-01-04"),
("Booooooo99900098", "2012-01-06"),
("OprahWinfreyJr", "2012-01-10"),
("SirChillingtonIV", "2012-01-11"),
("SirChillingtonIV", "2012-01-14"),
("SirChillingtonIV", "2012-08-11")
],
("user_name", "login_date"))
The above code creates a data frame like below
上面的代码创建了一个如下所示的数据框
+----------------+----------+
| user_name|login_date|
+----------------+----------+
|SirChillingtonIV|2012-01-04|
|Booooooo99900098|2012-01-04|
|Booooooo99900098|2012-01-06|
| OprahWinfreyJr|2012-01-10|
|SirChillingtonIV|2012-01-11|
|SirChillingtonIV|2012-01-14|
|SirChillingtonIV|2012-08-11|
+----------------+----------+
Now we want to first find out the difference between login_date
is more than 5
days.
现在我们要先找出两者之间的区别login_date
是多于5
天。
For this do like below.
为此,请执行以下操作。
Necessary imports
必要的进口
from pyspark.sql import functions as f
from pyspark.sql import Window
# defining window partitions
login_window = Window.partitionBy("user_name").orderBy("login_date")
session_window = Window.partitionBy("user_name", "session")
session_df = df.withColumn("session", f.sum((f.coalesce(f.datediff("login_date", f.lag("login_date", 1).over(login_window)), f.lit(0)) > 5).cast("int")).over(login_window))
When we run the above line of code if the date_diff
is NULL
then the coalesce
function will replace NULL
to 0
.
当我们运行上面的代码行时,如果date_diff
是,NULL
则coalesce
函数将替换NULL
为0
。
+----------------+----------+-------+
| user_name|login_date|session|
+----------------+----------+-------+
| OprahWinfreyJr|2012-01-10| 0|
|SirChillingtonIV|2012-01-04| 0|
|SirChillingtonIV|2012-01-11| 1|
|SirChillingtonIV|2012-01-14| 1|
|SirChillingtonIV|2012-08-11| 2|
|Booooooo99900098|2012-01-04| 0|
|Booooooo99900098|2012-01-06| 0|
+----------------+----------+-------+
# add became_active column by finding the `min login_date` for each window partitionBy `user_name` and `session` created in above step
final_df = session_df.withColumn("became_active", f.min("login_date").over(session_window)).drop("session")
+----------------+----------+-------------+
| user_name|login_date|became_active|
+----------------+----------+-------------+
| OprahWinfreyJr|2012-01-10| 2012-01-10|
|SirChillingtonIV|2012-01-04| 2012-01-04|
|SirChillingtonIV|2012-01-11| 2012-01-11|
|SirChillingtonIV|2012-01-14| 2012-01-11|
|SirChillingtonIV|2012-08-11| 2012-08-11|
|Booooooo99900098|2012-01-04| 2012-01-04|
|Booooooo99900098|2012-01-06| 2012-01-04|
+----------------+----------+-------------+