pandas 在PANDAS中,如何获取已知值的索引?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/16683701/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-09 00:09:40  来源:igfitidea点击:

In PANDAS, how to get the index of a known value?

indexingpandas

提问by user2407991

If we have a known value in a column, how can we get its index-value? For example:

如果我们在列中有一个已知值,我们如何获得它的索引值?例如:

In [148]: a = pd.DataFrame(np.arange(10).reshape(5,2),columns=['c1','c2'])
In [149]: a
Out[149]:   
   c1  c2
0   0   1
1   2   3
2   4   5
........

As we know, we can get a value by the index corresponding to it, like this.

众所周知,我们可以通过它对应的索引来获取一个值,就像这样。

In [151]: a.ix[0,1]    In [152]: a.c2[0]   In [154]: a.c2.ix[0]   <--  use index
Out[151]: 1            Out[152]: 1         Out[154]: 1            <--  get value

But how to get the index by value?

但是如何按值获取索引呢?

回答by waitingkuo

There might be more than one index map to your value, it make more sense to return a list:

可能有多个索引映射到您的值,返回一个列表更有意义:

In [48]: a
Out[48]: 
   c1  c2
0   0   1
1   2   3
2   4   5
3   6   7
4   8   9

In [49]: a.c1[a.c1 == 8].index.tolist()
Out[49]: [4]

回答by gxpr

Using the .loc[] accessor:

使用 .loc[] 访问器:

In [25]: a.loc[a['c1'] == 8].index[0]
Out[25]: 4

Can also use the get_loc() by setting 'c1' as the index. This will not change the original dataframe.

也可以通过将“c1”设置为索引来使用 get_loc()。这不会改变原始数据帧。

In [17]: a.set_index('c1').index.get_loc(8)
Out[17]: 4

回答by Surya

The other way around using numpy.where() :

使用 numpy.where() 的另一种方式:

import numpy as np
import pandas as pd

In [800]: df = pd.DataFrame(np.arange(10).reshape(5,2),columns=['c1','c2'])

In [801]: df
Out[801]: 
   c1  c2
0   0   1
1   2   3
2   4   5
3   6   7
4   8   9

In [802]: np.where(df["c1"]==6)
Out[802]: (array([3]),)

In [803]: indices = list(np.where(df["c1"]==6)[0])

In [804]: df.iloc[indices]
Out[804]: 
   c1  c2
3   6   7

In [805]: df.iloc[indices].index
Out[805]: Int64Index([3], dtype='int64')

In [806]: df.iloc[indices].index.tolist()
Out[806]: [3]

回答by RumbleFish

To get the index by value, simply add .index[0]to the end of a query. This will return the index of the first row of the result...

要按值获取索引,只需将.index[0]添加 到查询的末尾。这将返回结果第一行的索引...

So, applied to your dataframe:

因此,应用于您的数据框:

In [1]: a[a['c2'] == 1].index[0]     In [2]: a[a['c1'] > 7].index[0]   
Out[1]: 0                            Out[2]: 4                         

Where the query returns more than one row, the additional index results can be accessed by specifying the desired index, e.g. .index[n]

在查询返回多于一行的情况下,可以通过指定所需的索引来访问额外的索引结果,例如.index[n]

In [3]: a[a['c2'] >= 7].index[1]     In [4]: a[(a['c2'] > 1) & (a['c1'] < 8)].index[2]  
Out[3]: 4                            Out[4]: 3 

回答by Jay

I think this may help you , both index and columns of the values.

我认为这可能对您有所帮助,包括值的索引和列。

value you are looking for is not duplicated:

您正在寻找的值不重复

poz=matrix[matrix==minv].dropna(axis=1,how='all').dropna(how='all')
value=poz.iloc[0,0]
index=poz.index.item()
column=poz.columns.item()

you can get its index and column

你可以得到它的索引和列

duplicated:

重复:

matrix=pd.DataFrame([[1,1],[1,np.NAN]],index=['q','g'],columns=['f','h'])
matrix
Out[83]: 
   f    h
q  1  1.0
g  1  NaN
poz=matrix[matrix==minv].dropna(axis=1,how='all').dropna(how='all')
index=poz.stack().index.tolist()
index
Out[87]: [('q', 'f'), ('q', 'h'), ('g', 'f')]

you will get a list

你会得到一个清单