Python 将 DataFrame 列类型从字符串转换为日期时间,dd/mm/yyyy 格式

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/17134716/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 00:34:19  来源:igfitidea点击:

Convert DataFrame column type from string to datetime, dd/mm/yyyy format

pythonpandasdataframedatetime-formatpython-datetime

提问by perigee

How can I convert a DataFrame column of strings (in dd/mm/yyyyformat) to datetimes?

如何将字符串的 DataFrame 列(以dd/mm/yyyy格式)转换为日期时间?

采纳答案by Andy Hayden

The easiest way is to use to_datetime:

最简单的方法是使用to_datetime

df['col'] = pd.to_datetime(df['col'])

It also offers a dayfirstargument for European times (but beware this isn't strict).

它还dayfirst为欧洲时代提供了一个论据(但要注意这不是严格的)。

Here it is in action:

这是在行动:

In [11]: pd.to_datetime(pd.Series(['05/23/2005']))
Out[11]:
0   2005-05-23 00:00:00
dtype: datetime64[ns]

You can pass a specific format:

您可以传递特定格式

In [12]: pd.to_datetime(pd.Series(['05/23/2005']), format="%m/%d/%Y")
Out[12]:
0   2005-05-23
dtype: datetime64[ns]

回答by sigurdb

If your date column is a string of the format '2017-01-01' you can use pandas astype to convert it to datetime.

如果您的日期列是格式为“2017-01-01”的字符串,您可以使用 pandas astype 将其转换为日期时间。

df['date'] = df['date'].astype('datetime64[ns]')

df['date'] = df['date'].astype('datetime64[ns]')

or use datetime64[D] if you want Day precision and not nanoseconds

或使用 datetime64[D] 如果您想要 Day 精度而不是纳秒

print(type(df_launath['date'].iloc[0]))

print(type(df_launath['date'].iloc[0]))

yields

产量

<class 'pandas._libs.tslib.Timestamp'>the same as when you use pandas.to_datetime

<class 'pandas._libs.tslib.Timestamp'>与使用 pandas.to_datetime 时相同

You can try it with other formats then '%Y-%m-%d' but at least this works.

您可以尝试使用其他格式然后 '%Y-%m-%d' 但至少这是有效的。

回答by Ekhtiar

You can use the following if you want to specify tricky formats:

如果要指定棘手的格式,可以使用以下内容:

df['date_col'] =  pd.to_datetime(df['date_col'], format='%d/%m/%Y')

More details on formathere:

更多细节在format这里:

回答by abhyudayasrinet

If you have a mixture of formats in your date, don't forget to set infer_datetime_format=Trueto make life easier

如果您的约会对象混合了多种格式,请不要忘记设置infer_datetime_format=True让生活更轻松

df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True)

df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True)

Source: pd.to_datetime

来源:pd.to_datetime

or if you want a customized approach:

或者如果你想要一个定制的方法:

def autoconvert_datetime(value):
    formats = ['%m/%d/%Y', '%m-%d-%y']  # formats to try
    result_format = '%d-%m-%Y'  # output format
    for dt_format in formats:
        try:
            dt_obj = datetime.strptime(value, dt_format)
            return dt_obj.strftime(result_format)
        except Exception as e:  # throws exception when format doesn't match
            pass
    return value  # let it be if it doesn't match

df['date'] = df['date'].apply(autoconvert_datetime)