scala 如何从 SparkSQL DataFrame 中的 MapType 列中获取键和值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/40602606/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to get keys and values from MapType column in SparkSQL DataFrame
提问by lloydh
I have data in a parquet file which has 2 fields: object_id: Stringand alpha: Map<>.
我在一个镶木地板文件中有数据,它有 2 个字段:object_id: String和alpha: Map<>.
It is read into a data frame in sparkSQL and the schema looks like this:
它被读入 sparkSQL 中的数据框,架构如下所示:
scala> alphaDF.printSchema()
root
|-- object_id: string (nullable = true)
|-- ALPHA: map (nullable = true)
| |-- key: string
| |-- value: struct (valueContainsNull = true)
I am using Spark 2.0 and I am trying to create a new data frame in which columns need to be object_idplus keys of the ALPHAmap as in object_id, key1, key2, key2, ...
我正在使用 Spark 2.0,我正在尝试创建一个新的数据框,其中的列需要object_id加上ALPHA地图的键,如object_id, key1, key2, key2, ...
I was first trying to see if I could at least access the map like this:
我首先试图看看我是否至少可以像这样访问地图:
scala> alphaDF.map(a => a(0)).collect()
<console>:32: error: Unable to find encoder for type stored in a Dataset.
Primitive types (Int, String, etc) and Product types (case classes) are
supported by importing spark.implicits._ Support for serializing other
types will be added in future releases.
alphaDF.map(a => a(0)).collect()
but unfortunately I can't seem to be able to figure out how to access the keys of the map.
但不幸的是,我似乎无法弄清楚如何访问地图的键。
Can someone please show me a way to get the object_idplus map keys as column names and map values as respective values in a new dataframe?
有人可以告诉我一种方法来获取object_id加号映射键作为列名和映射值作为新数据框中的相应值吗?
回答by zero323
Spark >= 2.3
火花 >= 2.3
You can simplify the process using map_keysfunction:
您可以使用以下map_keys功能简化流程:
import org.apache.spark.sql.functions.map_keys
There is also map_valuesfunction, but it won't be directly useful here.
也有map_values函数,但在这里不会直接有用。
Spark < 2.3
火花 < 2.3
General method can be expressed in a few steps. First required imports:
一般方法可以用几个步骤来表示。首先需要导入:
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.Row
and example data:
和示例数据:
val ds = Seq(
(1, Map("foo" -> (1, "a"), "bar" -> (2, "b"))),
(2, Map("foo" -> (3, "c"))),
(3, Map("bar" -> (4, "d")))
).toDF("id", "alpha")
To extract keys we can use UDF (Spark < 2.3)
要提取密钥,我们可以使用 UDF (Spark < 2.3)
val map_keys = udf[Seq[String], Map[String, Row]](_.keys.toSeq)
or built-in functions
或内置函数
import org.apache.spark.sql.functions.map_keys
val keysDF = df.select(map_keys($"alpha"))
Find distinct ones:
找到不同的:
val distinctKeys = keysDF.as[Seq[String]].flatMap(identity).distinct
.collect.sorted
You can also generalize keysextraction with explode:
您还可以使用以下方法概括keys提取explode:
import org.apache.spark.sql.functions.explode
val distinctKeys = df
// Flatten the column into key, value columns
.select(explode($"alpha"))
.select($"key")
.as[String].distinct
.collect.sorted
And select:
并且select:
ds.select($"id" +: distinctKeys.map(x => $"alpha".getItem(x).alias(x)): _*)

