scala 如何将新的 Struct 列添加到 DataFrame

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/31615657/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-10-22 07:23:49  来源:igfitidea点击:

How to add a new Struct column to a DataFrame

scalaelasticsearchapache-sparketlapache-spark-sql

提问by Kim Ngo

I'm currently trying to extract a database from MongoDB and use Spark to ingest into ElasticSearch with geo_points.

我目前正在尝试从 MongoDB 中提取数据库并使用 Spark 将geo_points.

The Mongo database has latitude and longitude values, but ElasticSearch requires them to be casted into the geo_pointtype.

Mongo 数据库有纬度和经度值,但 ElasticSearch 要求将它们转换为geo_point类型。

Is there a way in Spark to copy the latand loncolumns to a new column that is an arrayor struct?

Spark 中有没有办法将latlon列复制到一个array或的新列中struct

Any help is appreciated!

任何帮助表示赞赏!

回答by zero323

I assume you start with some kind of flat schema like this:

我假设您从某种类似这样的平面模式开始:

root
 |-- lat: double (nullable = false)
 |-- long: double (nullable = false)
 |-- key: string (nullable = false)

First lets create example data:

首先让我们创建示例数据:

import org.apache.spark.sql.Row
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.types._

val rdd = sc.parallelize(
    Row(52.23, 21.01, "Warsaw") :: Row(42.30, 9.15, "Corte") :: Nil)

val schema = StructType(
    StructField("lat", DoubleType, false) ::
    StructField("long", DoubleType, false) ::
    StructField("key", StringType, false) ::Nil)

val df = sqlContext.createDataFrame(rdd, schema)

An easy way is to use an udf and case class:

一个简单的方法是使用 udf 和 case 类:

case class Location(lat: Double, long: Double)
val makeLocation = udf((lat: Double, long: Double) => Location(lat, long))

val dfRes = df.
   withColumn("location", makeLocation(col("lat"), col("long"))).
   drop("lat").
   drop("long")

dfRes.printSchema

and we get

我们得到

root
 |-- key: string (nullable = false)
 |-- location: struct (nullable = true)
 |    |-- lat: double (nullable = false)
 |    |-- long: double (nullable = false)

A hard way is to transform your data and apply schema afterwards:

一个困难的方法是转换您的数据并在之后应用架构:

val rddRes = df.
    map{case Row(lat, long, key) => Row(key, Row(lat, long))}

val schemaRes = StructType(
    StructField("key", StringType, false) ::
    StructField("location", StructType(
        StructField("lat", DoubleType, false) ::
        StructField("long", DoubleType, false) :: Nil
    ), true) :: Nil 
)

sqlContext.createDataFrame(rddRes, schemaRes).show

and we get an expected output

我们得到了预期的输出

+------+-------------+
|   key|     location|
+------+-------------+
|Warsaw|[52.23,21.01]|
| Corte|  [42.3,9.15]|
+------+-------------+

Creating nested schema from scratch can be tedious so if you can I would recommend the first approach. It can be easily extended if you need more sophisticated structure:

从头开始创建嵌套模式可能很乏味,所以如果可以的话,我会推荐第一种方法。如果您需要更复杂的结构,它可以轻松扩展:

case class Pin(location: Location)
val makePin = udf((lat: Double, long: Double) => Pin(Location(lat, long))

df.
    withColumn("pin", makePin(col("lat"), col("long"))).
    drop("lat").
    drop("long").
    printSchema

and we get expected output:

我们得到了预期的输出:

root
 |-- key: string (nullable = false)
 |-- pin: struct (nullable = true)
 |    |-- location: struct (nullable = true)
 |    |    |-- lat: double (nullable = false)
 |    |    |-- long: double (nullable = false)

Unfortunately you have no control over nullablefield so if is important for your project you'll have to specify schema.

不幸的是,您无法控制nullable字段,因此如果对您的项目很重要,则必须指定架构。

Finally you can use structfunction introduced in 1.4:

最后你可以使用struct1.4 中引入的函数:

import org.apache.spark.sql.functions.struct

df.select($"key", struct($"lat", $"long").alias("location"))

回答by user8817325

Try this:

试试这个:

import org.apache.spark.sql.functions._

df.registerTempTable("dt")

dfres = sql("select struct(lat,lon) as colName from dt")