如何在 IPython 笔记本的 Pandas DataFrame 列中左对齐文本

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/25777037/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 22:27:09  来源:igfitidea点击:

How can I left justify text in a pandas DataFrame column in an IPython notebook

pandasipythonipython-notebook

提问by Fred Mitchell

I am trying to format the output in an IPython notebook. I tried using the to_string function, and this neatly lets me eliminate the index column. But the textual data is right justified.

我正在尝试在 IPython 笔记本中格式化输出。我尝试使用 to_string 函数,这巧妙地让我消除了索引列。但是文本数据是正确的。

In [10]:

在[10]:

import pandas as pd
columns = ['Text', 'Value']
a = pd.DataFrame ({'Text': ['abcdef', 'x'], 'Value': [12.34, 4.2]})
print (a.to_string (index=False))

   Text  Value
 abcdef  12.34
      x   4.20

The same is true when just printing the dataframe.

仅打印数据帧时也是如此。

In [12]:

在[12]:

print (a)

     Text  Value
0  abcdef  12.34
1       x   4.20

The justify argument in the to_string function, surprisingly, only justifies the column heading.

令人惊讶的是, to_string 函数中的 justify 参数仅对齐列标题。

In [13]:

在[13]:

import pandas as pd
columns = ['Text', 'Value']
a = pd.DataFrame ({'Text': ['abcdef', 'x'], 'Value': [12.34, 4.2]})
print (a.to_string (justify='left', index=False))
Text     Value
 abcdef  12.34
      x   4.20

How can I control the justification settings for individual columns?

如何控制单个列的对齐设置?

采纳答案by Brian Burns

If you're willing to use another library, tabulatewill do this -

如果你愿意使用另一个图书馆,制表会这样做 -

$ pip install tabulate

and then

进而

from tabulate import tabulate
df = pd.DataFrame ({'Text': ['abcdef', 'x'], 'Value': [12.34, 4.2]})
print(tabulate(df, showindex=False, headers=df.columns))

Text      Value
------  -------
abcdef    12.34
x          4.2

It has various other output formats also.

它也有各种其他输出格式。

回答by unutbu

You could use a['Text'].str.len().max()to compute the length of the longest string in a['Text'], and use that number, N, in a left-justified formatter '{:<Ns}'.format:

您可以使用a['Text'].str.len().max()计算 中最长字符串的长度a['Text'],并N在左对齐的格式化程序中使用该数字'{:<Ns}'.format

In [211]: print(a.to_string(formatters={'Text':'{{:<{}s}}'.format(a['Text'].str.len().max()).format}, index=False))
   Text  Value
 abcdef  12.34
 x        4.20

回答by JS.

I converted @unutbu's approach to a function so I could left-justify my dataframes.

我将@unutbu 的方法转换为一个函数,这样我就可以左对齐我的数据帧。

my_df = pd.DataFrame({'StringVals': ["Text string One", "Text string Two", "Text string Three"]})

def left_justified(df):
    formatters = {}
    for li in list(df.columns):
        max = df[li].str.len().max()
        form = "{{:<{}s}}".format(max)
        formatters[li] = functools.partial(str.format, form)
    return df.to_string(formatters=formatters, index=False)

So now this:

所以现在这个:

print(my_df.to_string())

          StringVals
0    Text string One
1    Text string Two
2  Text string Three

becomes this:

变成这样:

print(left_justified(my_df))

StringVals
Text string One  
Text string Two  
Text string Three

Note, however, any non-string values in your dataframe will give you errors:

但是请注意,数据框中的任何非字符串值都会给您错误:

AttributeError: Can only use .str accessor with string values, which use np.object_ dtype in pandas

AttributeError: Can only use .str accessor with string values, which use np.object_ dtype in pandas

You'll have to pass different format strings to .to_string()if you want it to work with non-string values:

.to_string()如果您希望它使用非字符串值,则必须将不同的格式字符串传递给:

my_df2 = pd.DataFrame({'Booleans'  : [False, True, True],
                       'Floats'    : [1.0, 0.4, 1.5],           
                       'StringVals': ["Text string One", "Text string Two", "Text string Three"]})

FLOAT_COLUMNS = ('Floats',)
BOOLEAN_COLUMNS = ('Booleans',)

def left_justified2(df):
    formatters = {}

    # Pass a custom pattern to format(), based on
    # type of data
    for li in list(df.columns):
        if li in FLOAT_COLUMNS:
           form = "{{!s:<5}}".format()
        elif li in BOOLEAN_COLUMNS:
            form = "{{!s:<8}}".format()
        else:
            max = df[li].str.len().max()
            form = "{{:<{}s}}".format(max)
        formatters[li] = functools.partial(str.format, form)
    return df.to_string(formatters=formatters, index=False)

With floats and booleans:

使用浮点数和布尔值:

print(left_justified2(my_df2))

Booleans Floats         StringVals
False     1.0    Text string One  
True      0.4    Text string Two  
True      1.5    Text string Three

Note this approach is a bit of a hack. Not only do you have to maintain column names in a separate lists, but you also have to best-guess at the data widths. Perhaps someone with better Pandas-Fu can demonstrate how to automate parsing the dataframe info to generate the formats automatically.

请注意,这种方法有点技巧性。您不仅必须在单独的列表中维护列名,而且还必须对数据宽度进行最佳猜测。也许有更好的 Pandas-Fu 的人可以演示如何自动解析数据帧信息以自动生成格式。

回答by Francis Trujillo

This works on Python 3.7 (functools is a part of that release now)

这适用于 Python 3.7(functools 现在是该版本的一部分)

# pylint: disable=C0103,C0200,R0205
from __future__ import print_function
import pandas as pd
import functools

@staticmethod
def displayDataFrame(dataframe, displayNumRows=True, displayIndex=True, leftJustify=True):
    # type: (pd.DataFrame, bool, bool, bool) -> None
    """
    :param dataframe: pandas DataFrame
    :param displayNumRows: If True, show the number or rows in the output.
    :param displayIndex: If True, then show the indexes
    :param leftJustify: If True, then use technique to format columns left justified.
    :return: None
    """

    if leftJustify:
        formatters = {}

        for columnName in list(dataframe.columns):
            columnType = type(columnName)  # The magic!!
            # print("{} =>  {}".format(columnName, columnType))
            if columnType == type(bool):
                form = "{{!s:<8}}".format()
            elif columnType == type(float):
                form = "{{!s:<5}}".format()
            else:
                max = dataframe[columnName].str.len().max()
                form = "{{:<{}s}}".format(max)

            formatters[columnName] = functools.partial(str.format, form)

        print(dataframe.to_string(index=displayIndex, formatters=formatters), end="\n\n")
    else:
        print(dataframe.to_string(index=displayIndex), end="\n\n")

    if displayNumRows:
        print("Num Rows: {}".format(len(dataframe)), end="\n\n")