C++ 进行定点数学的最佳方法是什么?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/79677/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
What's the best way to do fixed-point math?
提问by Jeremy Ruten
I need to speed up a program for the Nintendo DS which doesn't have an FPU, so I need to change floating-point math (which is emulated and slow) to fixed-point.
我需要为没有 FPU 的 Nintendo DS 加速一个程序,所以我需要将浮点数学(模拟且缓慢)更改为定点。
How I started was I changed floats to ints and whenever I needed to convert them, I used x>>8to convert the fixed-point variable x to the actual number and x<<8to convert to fixed-point. Soon I found out it was impossible to keep track of what needed to be converted and I also realized it would be difficult to change the precision of the numbers (8 in this case.)
我是如何开始将浮点数更改为整数的,每当我需要转换它们时,我使用x>>8将定点变量 x 转换为实际数字,使用x<<8转换为定点数。很快我发现无法跟踪需要转换的内容,并且我也意识到很难更改数字的精度(在这种情况下为 8)。
My question is, how should I make this easier and still fast? Should I make a FixedPoint class, or just a FixedPoint8 typedef or struct with some functions/macros to convert them, or something else? Should I put something in the variable name to show it's fixed-point?
我的问题是,我应该如何使这更容易并且仍然快速?我应该创建一个 FixedPoint 类,还是只是一个 FixedPoint8 typedef 或带有一些函数/宏的结构来转换它们,或者其他什么?我应该在变量名中放一些东西来显示它是定点吗?
回答by Evan Teran
You can try my fixed point class (Latest available @ https://github.com/eteran/cpp-utilities)
你可以试试我的定点类(最新可用@ https://github.com/eteran/cpp-utilities)
// From: https://github.com/eteran/cpp-utilities/edit/master/Fixed.h
// See also: http://stackoverflow.com/questions/79677/whats-the-best-way-to-do-fixed-point-math
/*
* The MIT License (MIT)
*
* Copyright (c) 2015 Evan Teran
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef FIXED_H_
#define FIXED_H_
#include <ostream>
#include <exception>
#include <cstddef> // for size_t
#include <cstdint>
#include <type_traits>
#include <boost/operators.hpp>
namespace numeric {
template <size_t I, size_t F>
class Fixed;
namespace detail {
// helper templates to make magic with types :)
// these allow us to determine resonable types from
// a desired size, they also let us infer the next largest type
// from a type which is nice for the division op
template <size_t T>
struct type_from_size {
static const bool is_specialized = false;
typedef void value_type;
};
#if defined(__GNUC__) && defined(__x86_64__)
template <>
struct type_from_size<128> {
static const bool is_specialized = true;
static const size_t size = 128;
typedef __int128 value_type;
typedef unsigned __int128 unsigned_type;
typedef __int128 signed_type;
typedef type_from_size<256> next_size;
};
#endif
template <>
struct type_from_size<64> {
static const bool is_specialized = true;
static const size_t size = 64;
typedef int64_t value_type;
typedef uint64_t unsigned_type;
typedef int64_t signed_type;
typedef type_from_size<128> next_size;
};
template <>
struct type_from_size<32> {
static const bool is_specialized = true;
static const size_t size = 32;
typedef int32_t value_type;
typedef uint32_t unsigned_type;
typedef int32_t signed_type;
typedef type_from_size<64> next_size;
};
template <>
struct type_from_size<16> {
static const bool is_specialized = true;
static const size_t size = 16;
typedef int16_t value_type;
typedef uint16_t unsigned_type;
typedef int16_t signed_type;
typedef type_from_size<32> next_size;
};
template <>
struct type_from_size<8> {
static const bool is_specialized = true;
static const size_t size = 8;
typedef int8_t value_type;
typedef uint8_t unsigned_type;
typedef int8_t signed_type;
typedef type_from_size<16> next_size;
};
// this is to assist in adding support for non-native base
// types (for adding big-int support), this should be fine
// unless your bit-int class doesn't nicely support casting
template <class B, class N>
B next_to_base(const N& rhs) {
return static_cast<B>(rhs);
}
struct divide_by_zero : std::exception {
};
template <size_t I, size_t F>
Fixed<I,F> divide(const Fixed<I,F> &numerator, const Fixed<I,F> &denominator, Fixed<I,F> &remainder, typename std::enable_if<type_from_size<I+F>::next_size::is_specialized>::type* = 0) {
typedef typename Fixed<I,F>::next_type next_type;
typedef typename Fixed<I,F>::base_type base_type;
static const size_t fractional_bits = Fixed<I,F>::fractional_bits;
next_type t(numerator.to_raw());
t <<= fractional_bits;
Fixed<I,F> quotient;
quotient = Fixed<I,F>::from_base(next_to_base<base_type>(t / denominator.to_raw()));
remainder = Fixed<I,F>::from_base(next_to_base<base_type>(t % denominator.to_raw()));
return quotient;
}
template <size_t I, size_t F>
Fixed<I,F> divide(Fixed<I,F> numerator, Fixed<I,F> denominator, Fixed<I,F> &remainder, typename std::enable_if<!type_from_size<I+F>::next_size::is_specialized>::type* = 0) {
// NOTE(eteran): division is broken for large types :-(
// especially when dealing with negative quantities
typedef typename Fixed<I,F>::base_type base_type;
typedef typename Fixed<I,F>::unsigned_type unsigned_type;
static const int bits = Fixed<I,F>::total_bits;
if(denominator == 0) {
throw divide_by_zero();
} else {
int sign = 0;
Fixed<I,F> quotient;
if(numerator < 0) {
sign ^= 1;
numerator = -numerator;
}
if(denominator < 0) {
sign ^= 1;
denominator = -denominator;
}
base_type n = numerator.to_raw();
base_type d = denominator.to_raw();
base_type x = 1;
base_type answer = 0;
// egyptian division algorithm
while((n >= d) && (((d >> (bits - 1)) & 1) == 0)) {
x <<= 1;
d <<= 1;
}
while(x != 0) {
if(n >= d) {
n -= d;
answer += x;
}
x >>= 1;
d >>= 1;
}
unsigned_type l1 = n;
unsigned_type l2 = denominator.to_raw();
// calculate the lower bits (needs to be unsigned)
// unfortunately for many fractions this overflows the type still :-/
const unsigned_type lo = (static_cast<unsigned_type>(n) << F) / denominator.to_raw();
quotient = Fixed<I,F>::from_base((answer << F) | lo);
remainder = n;
if(sign) {
quotient = -quotient;
}
return quotient;
}
}
// this is the usual implementation of multiplication
template <size_t I, size_t F>
void multiply(const Fixed<I,F> &lhs, const Fixed<I,F> &rhs, Fixed<I,F> &result, typename std::enable_if<type_from_size<I+F>::next_size::is_specialized>::type* = 0) {
typedef typename Fixed<I,F>::next_type next_type;
typedef typename Fixed<I,F>::base_type base_type;
static const size_t fractional_bits = Fixed<I,F>::fractional_bits;
next_type t(static_cast<next_type>(lhs.to_raw()) * static_cast<next_type>(rhs.to_raw()));
t >>= fractional_bits;
result = Fixed<I,F>::from_base(next_to_base<base_type>(t));
}
// this is the fall back version we use when we don't have a next size
// it is slightly slower, but is more robust since it doesn't
// require and upgraded type
template <size_t I, size_t F>
void multiply(const Fixed<I,F> &lhs, const Fixed<I,F> &rhs, Fixed<I,F> &result, typename std::enable_if<!type_from_size<I+F>::next_size::is_specialized>::type* = 0) {
typedef typename Fixed<I,F>::base_type base_type;
static const size_t fractional_bits = Fixed<I,F>::fractional_bits;
static const size_t integer_mask = Fixed<I,F>::integer_mask;
static const size_t fractional_mask = Fixed<I,F>::fractional_mask;
// more costly but doesn't need a larger type
const base_type a_hi = (lhs.to_raw() & integer_mask) >> fractional_bits;
const base_type b_hi = (rhs.to_raw() & integer_mask) >> fractional_bits;
const base_type a_lo = (lhs.to_raw() & fractional_mask);
const base_type b_lo = (rhs.to_raw() & fractional_mask);
const base_type x1 = a_hi * b_hi;
const base_type x2 = a_hi * b_lo;
const base_type x3 = a_lo * b_hi;
const base_type x4 = a_lo * b_lo;
result = Fixed<I,F>::from_base((x1 << fractional_bits) + (x3 + x2) + (x4 >> fractional_bits));
}
}
/*
* inheriting from boost::operators enables us to be a drop in replacement for base types
* without having to specify all the different versions of operators manually
*/
template <size_t I, size_t F>
class Fixed : boost::operators<Fixed<I,F>> {
static_assert(detail::type_from_size<I + F>::is_specialized, "invalid combination of sizes");
public:
static const size_t fractional_bits = F;
static const size_t integer_bits = I;
static const size_t total_bits = I + F;
typedef detail::type_from_size<total_bits> base_type_info;
typedef typename base_type_info::value_type base_type;
typedef typename base_type_info::next_size::value_type next_type;
typedef typename base_type_info::unsigned_type unsigned_type;
public:
static const size_t base_size = base_type_info::size;
static const base_type fractional_mask = ~((~base_type(0)) << fractional_bits);
static const base_type integer_mask = ~fractional_mask;
public:
static const base_type one = base_type(1) << fractional_bits;
public: // constructors
Fixed() : data_(0) {
}
Fixed(long n) : data_(base_type(n) << fractional_bits) {
// TODO(eteran): assert in range!
}
Fixed(unsigned long n) : data_(base_type(n) << fractional_bits) {
// TODO(eteran): assert in range!
}
Fixed(int n) : data_(base_type(n) << fractional_bits) {
// TODO(eteran): assert in range!
}
Fixed(unsigned int n) : data_(base_type(n) << fractional_bits) {
// TODO(eteran): assert in range!
}
Fixed(float n) : data_(static_cast<base_type>(n * one)) {
// TODO(eteran): assert in range!
}
Fixed(double n) : data_(static_cast<base_type>(n * one)) {
// TODO(eteran): assert in range!
}
Fixed(const Fixed &o) : data_(o.data_) {
}
Fixed& operator=(const Fixed &o) {
data_ = o.data_;
return *this;
}
private:
// this makes it simpler to create a fixed point object from
// a native type without scaling
// use "Fixed::from_base" in order to perform this.
struct NoScale {};
Fixed(base_type n, const NoScale &) : data_(n) {
}
public:
static Fixed from_base(base_type n) {
return Fixed(n, NoScale());
}
public: // comparison operators
bool operator==(const Fixed &o) const {
return data_ == o.data_;
}
bool operator<(const Fixed &o) const {
return data_ < o.data_;
}
public: // unary operators
bool operator!() const {
return !data_;
}
Fixed operator~() const {
Fixed t(*this);
t.data_ = ~t.data_;
return t;
}
Fixed operator-() const {
Fixed t(*this);
t.data_ = -t.data_;
return t;
}
Fixed operator+() const {
return *this;
}
Fixed& operator++() {
data_ += one;
return *this;
}
Fixed& operator--() {
data_ -= one;
return *this;
}
public: // basic math operators
Fixed& operator+=(const Fixed &n) {
data_ += n.data_;
return *this;
}
Fixed& operator-=(const Fixed &n) {
data_ -= n.data_;
return *this;
}
Fixed& operator&=(const Fixed &n) {
data_ &= n.data_;
return *this;
}
Fixed& operator|=(const Fixed &n) {
data_ |= n.data_;
return *this;
}
Fixed& operator^=(const Fixed &n) {
data_ ^= n.data_;
return *this;
}
Fixed& operator*=(const Fixed &n) {
detail::multiply(*this, n, *this);
return *this;
}
Fixed& operator/=(const Fixed &n) {
Fixed temp;
*this = detail::divide(*this, n, temp);
return *this;
}
Fixed& operator>>=(const Fixed &n) {
data_ >>= n.to_int();
return *this;
}
Fixed& operator<<=(const Fixed &n) {
data_ <<= n.to_int();
return *this;
}
public: // conversion to basic types
int to_int() const {
return (data_ & integer_mask) >> fractional_bits;
}
unsigned int to_uint() const {
return (data_ & integer_mask) >> fractional_bits;
}
float to_float() const {
return static_cast<float>(data_) / Fixed::one;
}
double to_double() const {
return static_cast<double>(data_) / Fixed::one;
}
base_type to_raw() const {
return data_;
}
public:
void swap(Fixed &rhs) {
using std::swap;
swap(data_, rhs.data_);
}
public:
base_type data_;
};
// if we have the same fractional portion, but differing integer portions, we trivially upgrade the smaller type
template <size_t I1, size_t I2, size_t F>
typename std::conditional<I1 >= I2, Fixed<I1,F>, Fixed<I2,F>>::type operator+(const Fixed<I1,F> &lhs, const Fixed<I2,F> &rhs) {
typedef typename std::conditional<
I1 >= I2,
Fixed<I1,F>,
Fixed<I2,F>
>::type T;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l + r;
}
template <size_t I1, size_t I2, size_t F>
typename std::conditional<I1 >= I2, Fixed<I1,F>, Fixed<I2,F>>::type operator-(const Fixed<I1,F> &lhs, const Fixed<I2,F> &rhs) {
typedef typename std::conditional<
I1 >= I2,
Fixed<I1,F>,
Fixed<I2,F>
>::type T;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l - r;
}
template <size_t I1, size_t I2, size_t F>
typename std::conditional<I1 >= I2, Fixed<I1,F>, Fixed<I2,F>>::type operator*(const Fixed<I1,F> &lhs, const Fixed<I2,F> &rhs) {
typedef typename std::conditional<
I1 >= I2,
Fixed<I1,F>,
Fixed<I2,F>
>::type T;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l * r;
}
template <size_t I1, size_t I2, size_t F>
typename std::conditional<I1 >= I2, Fixed<I1,F>, Fixed<I2,F>>::type operator/(const Fixed<I1,F> &lhs, const Fixed<I2,F> &rhs) {
typedef typename std::conditional<
I1 >= I2,
Fixed<I1,F>,
Fixed<I2,F>
>::type T;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l / r;
}
template <size_t I, size_t F>
std::ostream &operator<<(std::ostream &os, const Fixed<I,F> &f) {
os << f.to_double();
return os;
}
template <size_t I, size_t F>
const size_t Fixed<I,F>::fractional_bits;
template <size_t I, size_t F>
const size_t Fixed<I,F>::integer_bits;
template <size_t I, size_t F>
const size_t Fixed<I,F>::total_bits;
}
#endif
It is designed to be a near drop in replacement for floats/doubles and has a choose-able precision. It does make use of boost to add all the necessary math operator overloads, so you will need that as well (I believe for this it is just a header dependency, not a library dependency).
它旨在替代浮点数/双精度数,并具有可选的精度。它确实利用 boost 来添加所有必要的数学运算符重载,因此您也将需要它(我相信这只是头依赖项,而不是库依赖项)。
BTW, common usage could be something like this:
顺便说一句,常见的用法可能是这样的:
using namespace numeric;
typedef Fixed<16, 16> fixed;
fixed f;
The only real rule is that the number have to add up to a native size of your system such as 8, 16, 32, 64.
唯一真正的规则是该数字必须加起来等于系统的本机大小,例如 8、16、32、64。
回答by Antti Kissaniemi
In modern C++ implementations, there will be no performance penalty for using simple and lean abstractions, such as concrete classes. Fixed-point computation is preciselythe place where using a properly engineered class will save you from lots of bugs.
在现代 C++ 实现中,使用简单和精益的抽象(例如具体类)不会有性能损失。定点计算正是使用适当设计的类可以避免许多错误的地方。
Therefore, you should write a FixedPoint8 class. Test and debug it thoroughly. If you have to convince yourself of its performance as compared to using plain integers, measure it.
因此,您应该编写一个 FixedPoint8 类。对其进行彻底的测试和调试。如果您必须说服自己与使用普通整数相比它的性能,请测量它。
It will save you from many a trouble by moving the complexity of fixed-point calculation to a single place.
通过将定点计算的复杂性转移到一个地方,它将为您省去许多麻烦。
If you like, you can further increase the utility of your class by making it a template and replacing the old FixedPoint8
with, say, typedef FixedPoint<short, 8> FixedPoint8;
But on your target architecture this is not probably necessary, so avoid the complexity of templates at first.
如果您愿意,您可以通过将其设为模板并将旧的替换为例如,来进一步提高您的类的实用性FixedPoint8
,typedef FixedPoint<short, 8> FixedPoint8;
但是在您的目标架构上,这可能不是必需的,因此首先要避免模板的复杂性。
There is probably a good fixed point class somewhere in the internet - I'd start looking from the Boostlibraries.
互联网上的某个地方可能有一个很好的定点类 - 我会从Boost库开始寻找。
回答by Antti Kissaniemi
Does your floating point code actually make use of the decimal point? If so:
您的浮点代码实际上使用了小数点吗?如果是这样的话:
First you have to read Randy Yates's paper on Intro to Fixed Point Math: http://www.digitalsignallabs.com/fp.pdf
首先,您必须阅读 Randy Yates 关于定点数学介绍的论文:http: //www.digitalsignallabs.com/fp.pdf
Then you need to do "profiling" on your floating point code to figure out the appropriate range of fixed-point values required at "critical" points in your code, e.g. U(5,3) = 5 bits to the left, 3 bits to the right, unsigned.
然后,您需要对浮点代码进行“分析”,以找出代码中“关键”点所需的适当定点值范围,例如 U(5,3) = 5 位向左,3 位右边,未签名。
At this point, you can apply the arithmetic rules in the paper mentioned above; the rules specify how to interpret the bits which result from arithmetic operations. You can write macros or functions to perform the operations.
此时,你可以应用上面提到的论文中的算术规则;这些规则指定了如何解释算术运算产生的位。您可以编写宏或函数来执行操作。
It's handy to keep the floating point version around, in order to compare the floating point vs fixed point results.
保留浮点版本很方便,以便比较浮点与定点结果。
回答by paxdiablo
I wouldn't use floating point at all on a CPU without special hardware for handling it. My advice is to treat ALL numbers as integers scaled to a specific factor. For example, all monetary values are in cents as integers rather than dollars as floats. For example, 0.72 is represented as the integer 72.
如果没有特殊硬件来处理它,我根本不会在 CPU 上使用浮点数。我的建议是将所有数字视为缩放到特定因子的整数。例如,所有货币价值都以美分为整数,而不是以美元为浮点数。例如,0.72 表示为整数 72。
Addition and subtraction are then a very simple integer operation such as (0.72 + 1 becomes 72 + 100 becomes 172 becomes 1.72).
加法和减法是一个非常简单的整数运算,例如(0.72 + 1 变为 72 + 100 变为 172 变为 1.72)。
Multiplication is slightly more complex as it needs an integer multiply followed by a scale back such as (0.72 * 2 becomes 72 * 200 becomes 14400 becomes 144 (scaleback) becomes 1.44).
乘法稍微复杂一些,因为它需要一个整数乘法,然后再进行缩减,例如(0.72 * 2 变为 72 * 200 变为 14400 变为 144(缩减)变为 1.44)。
That may require special functions for performing more complex math (sine, cosine, etc) but even those can be sped up by using lookup tables. Example: since you're using fixed-2 representation, there's only 100 values in the range (0.0,1] (0-99) and sin/cos repeat outside this range so you only need a 100-integer lookup table.
这可能需要特殊的函数来执行更复杂的数学(正弦、余弦等),但即使是这些也可以通过使用查找表来加速。示例:由于您使用的是固定 2 表示,因此 (0.0,1] (0-99) 范围内只有 100 个值,并且正弦/余弦在此范围之外重复,因此您只需要一个 100 整数查找表。
Cheers, Pax.
干杯,帕克斯。
回答by Bart
Changing fixed point representations is commonly called 'scaling'.
更改定点表示通常称为“缩放”。
If you can do this with a class with no performance penalty, then that's the way to go. It depends heavily on the compiler and how it inlines. If there is a performance penalty using classes, then you need a more traditional C-style approach. The OOP approach will give you compiler-enforced type safety which the traditional implementation only approximates.
如果你可以用一个没有性能损失的类来做到这一点,那么这就是要走的路。它在很大程度上取决于编译器及其内联方式。如果使用类会降低性能,那么您需要更传统的 C 风格方法。OOP 方法将为您提供编译器强制的类型安全性,而传统实现仅近似于这种安全性。
@cibyr has a good OOP implementation. Now for the more traditional one.
@cibyr 有一个很好的 OOP 实现。现在是更传统的。
To keep track of which variables are scaled, you need to use a consistent convention. Make a notation at the end of each variable name to indicate whether the value is scaled or not, and write macros SCALE() and UNSCALE() that expand to x>>8 and x<<8.
要跟踪哪些变量被缩放,您需要使用一致的约定。在每个变量名的末尾做一个符号以指示值是否缩放,并编写扩展为 x>>8 和 x<<8 的宏 SCALE() 和 UNSCALE()。
#define SCALE(x) (x>>8)
#define UNSCALE(x) (x<<8)
xPositionUnscaled = UNSCALE(10);
xPositionScaled = SCALE(xPositionUnscaled);
It may seem like extra work to use so much notation, but notice how you can tell at a glance that any line is correct without looking at other lines. For example:
使用这么多符号似乎是额外的工作,但请注意如何在不查看其他行的情况下一眼就能看出任何一行是正确的。例如:
xPositionScaled = SCALE(xPositionScaled);
is obviously wrong, by inspection.
通过检查,显然是错误的。
This is a variation of the Apps Hungarianidea that Joel mentions in this post.
这是Joel 在这篇文章中提到的Apps Hungarian想法的变体。
回答by ryan_s
When I first encountered fixed point numbers I found Joe Lemieux's article, Fixed-point Math in C, very helpful, and it does suggest one way of representing fixed-point values.
当我第一次遇到定点数时,我发现 Joe Lemieux 的文章Fixed-point Math in C非常有帮助,它确实提出了一种表示定点值的方法。
I didn't wind up using his union representation for fixed-point numbers though. I mostly have experience with fixed-point in C, so I haven't had the option to use a class either. For the most part though, I think that defining your number of fraction bits in a macro and using descriptive variable names makes this fairly easy to work with. Also, I've found that it is best to have macros or functions for multiplication and especially division, or you quickly get unreadable code.
不过,我最终并没有使用他的联合表示来表示定点数。我主要有 C 中定点的经验,所以我也没有选择使用类。不过,在大多数情况下,我认为在宏中定义小数位数并使用描述性变量名称使这很容易使用。此外,我发现最好有用于乘法尤其是除法的宏或函数,否则您很快就会得到不可读的代码。
For example, with 24.8 values:
例如,有 24.8 个值:
#include "stdio.h"
/* Declarations for fixed point stuff */
typedef int int_fixed;
#define FRACT_BITS 8
#define FIXED_POINT_ONE (1 << FRACT_BITS)
#define MAKE_INT_FIXED(x) ((x) << FRACT_BITS)
#define MAKE_FLOAT_FIXED(x) ((int_fixed)((x) * FIXED_POINT_ONE))
#define MAKE_FIXED_INT(x) ((x) >> FRACT_BITS)
#define MAKE_FIXED_FLOAT(x) (((float)(x)) / FIXED_POINT_ONE)
#define FIXED_MULT(x, y) ((x)*(y) >> FRACT_BITS)
#define FIXED_DIV(x, y) (((x)<<FRACT_BITS) / (y))
/* tests */
int main()
{
int_fixed fixed_x = MAKE_FLOAT_FIXED( 4.5f );
int_fixed fixed_y = MAKE_INT_FIXED( 2 );
int_fixed fixed_result = FIXED_MULT( fixed_x, fixed_y );
printf( "%.1f\n", MAKE_FIXED_FLOAT( fixed_result ) );
fixed_result = FIXED_DIV( fixed_result, fixed_y );
printf( "%.1f\n", MAKE_FIXED_FLOAT( fixed_result ) );
return 0;
}
Which writes out
哪个写出
9.0 4.5
Note that there are all kinds of integer overflow issues with those macros, I just wanted to keep the macros simple. This is just a quick and dirty example of how I've done this in C. In C++ you could make something a lot cleaner using operator overloading. Actually, you could easily make that C code a lot prettier too...
请注意,这些宏存在各种整数溢出问题,我只是想让宏保持简单。这只是我如何在 C 中完成此操作的一个快速而肮脏的示例。在 C++ 中,您可以使用运算符重载使事情变得更清晰。实际上,您也可以轻松地使 C 代码更漂亮……
I guess this is a long-winded way of saying: I think it's OK to use a typedef and macro approach. So long as you're clear about what variables contain fixed point values it isn't too hard to maintain, but it probably won't be as pretty as a C++ class.
我想这是一种冗长的说法:我认为使用 typedef 和宏方法是可以的。只要您清楚哪些变量包含定点值,维护起来并不难,但它可能不会像 C++ 类那样漂亮。
If I was in your position, I would try to get some profiling numbers to show where the bottlenecks are. If there are relatively few of them then go with a typedef and macros. If you decide that you need a global replacement of all floats with fixed-point math though, then you'll probably be better off with a class.
如果我处于您的位置,我会尝试获取一些分析数据以显示瓶颈所在。如果它们相对较少,则使用 typedef 和宏。如果您决定需要用定点数学全局替换所有浮点数,那么您可能会更好地使用类。
回答by Ana Betts
The original version of Tricks of the Game Programming Gurushas an entire chapter on implementing fixed-point math.
Tricks of the Game Programming Gurus的原始版本有一整章是关于实现定点数学的。
回答by jfm3
Whichever way you decide to go (I'd lean toward a typedef and some CPP macros for converting), you will need to be careful to convert back and forth with some discipline.
无论您决定采用哪种方式(我倾向于使用 typedef 和一些用于转换的 CPP 宏),您都需要小心地以某种规则来回转换。
You might find that you never need to convert back and forth. Just imagine everything in the whole system is x256.
您可能会发现您永远不需要来回转换。想象一下整个系统中的一切都是x256。
回答by jfm3
template <int precision = 8> class FixedPoint {
private:
int val_;
public:
inline FixedPoint(int val) : val_ (val << precision) {};
inline operator int() { return val_ >> precision; }
// Other operators...
};