Python 计算熊猫数据框中某些单词的出现次数

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/17573814/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 08:33:54  来源:igfitidea点击:

Count occurrences of certain words in pandas dataframe

pythonpandasdataframe

提问by Nilani Algiriyage

I want to count number of occurrences of certain words in a data frame. I know using "str.contains"

我想计算数据框中某些单词的出现次数。我知道使用“str.contains”

a = df2[df2['col1'].str.contains("sample")].groupby('col2').size()
n = a.apply(lambda x: 1).sum()

Currently I'm using the above code. Is there a method to match regular expression and get the count of occurrences? In my case I have a large dataframe and I want to match around 100 strings.

目前我正在使用上面的代码。是否有匹配正则表达式并获取出现次数的方法?就我而言,我有一个大数据框,我想匹配大约 100 个字符串。

采纳答案by Andy Hayden

Update: Original answer counts those rows which contain a substring.

更新:原始答案计算那些包含子字符串的行。

To count all the occurrences of a substring you can use .str.count:

要计算子字符串的所有出现次数,您可以使用.str.count

In [21]: df = pd.DataFrame(['hello', 'world', 'hehe'], columns=['words'])

In [22]: df.words.str.count("he|wo")
Out[22]:
0    1
1    1
2    2
Name: words, dtype: int64

In [23]: df.words.str.count("he|wo").sum()
Out[23]: 4


The str.containsmethod accepts a regular expression:

str.contains方法接受一个正则表达式:

Definition: df.words.str.contains(self, pat, case=True, flags=0, na=nan)
Docstring:
Check whether given pattern is contained in each string in the array

Parameters
----------
pat : string
    Character sequence or regular expression
case : boolean, default True
    If True, case sensitive
flags : int, default 0 (no flags)
    re module flags, e.g. re.IGNORECASE
na : default NaN, fill value for missing values.

For example:

例如:

In [11]: df = pd.DataFrame(['hello', 'world'], columns=['words'])

In [12]: df
Out[12]:
   words
0  hello
1  world

In [13]: df.words.str.contains(r'[hw]')
Out[13]:
0    True
1    True
Name: words, dtype: bool

In [14]: df.words.str.contains(r'he|wo')
Out[14]:
0    True
1    True
Name: words, dtype: bool

To count the occurences you can just sum this boolean Series:

要计算出现次数,您可以对这个布尔系列求和:

In [15]: df.words.str.contains(r'he|wo').sum()
Out[15]: 2

In [16]: df.words.str.contains(r'he').sum()
Out[16]: 1

回答by Dan Allan

To count the total number of matches, use s.str.match(...).str.get(0).count().

要计算匹配的总数,请使用s.str.match(...).str.get(0).count()

If your regex will be matching several unique words, to be tallied individually, use s.str.match(...).str.get(0).groupby(lambda x: x).count()

如果您的正则表达式将匹配几个独特的单词,要单独计算,请使用 s.str.match(...).str.get(0).groupby(lambda x: x).count()

It works like this:

它是这样工作的:

In [12]: s
Out[12]: 
0    ax
1    ay
2    bx
3    by
4    bz
dtype: object

The matchstring method handles regular expressions...

match字符串的方法处理正则表达式...

In [13]: s.str.match('(b[x-y]+)')
Out[13]: 
0       []
1       []
2    (bx,)
3    (by,)
4       []
dtype: object

...but the results, as given, are not very convenient. The string method gettakes the matches as strings and converts empty results to NaNs...

...但结果,正如给定的,不是很方便。string 方法get将匹配项作为字符串并将空结果转换为 NaN...

In [14]: s.str.match('(b[x-y]+)').str.get(0)
Out[14]: 
0    NaN
1    NaN
2     bx
3     by
4    NaN
dtype: object

...which are not counted.

……不计算在内。

In [15]: s.str.match('(b[x-y]+)').str.get(0).count()
Out[15]: 2