计算每个 pandas.DataFrame 列的 numpy.std?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/20432278/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:25:17  来源:igfitidea点击:

Calculate numpy.std of each pandas.DataFrame's column?

pythonnumpypandas

提问by Michael

I want to get the numpy.stdof each column of my pandas.DataFrame.

我想获得numpy.std我的pandas.DataFrame.

Here is my code:

这是我的代码:

import pandas as pd
import numpy as np

prices = pd.DataFrame([[-0.33333333, -0.25343423, -0.1666666667],
                       [+0.23432323, +0.14285714, -0.0769230769],
                       [+0.42857143, +0.07692308, +0.1818181818]])

print(pd.DataFrame(prices.std(axis=0)))

Here is my code's output:

这是我的代码的输出:

pd.DataFrame([[ 0.39590933],
              [ 0.21234018],
              [ 0.1809432 ]])

And here is the right output (if calculate with np.std)

这是正确的输出(如果用 计算np.std

pd.DataFrame([[ 0.32325862],
              [ 0.17337503],
              [ 0.1477395 ]])

Why am I having such difference? How can I fix that?

为什么我的差别这么大?我该如何解决?

NOTE: I have tried to do this way:

注意:我试图这样做:

print(np.std(prices, axis=0))

But I had the following error:

但我有以下错误:

Traceback (most recent call last):
  File "C:\Users\*****\Documents\******\******\****.py", line 10, in <module>
    print(np.std(prices, axis=0))
  File "C:\Python33\lib\site-packages\numpy\core\fromnumeric.py", line 2812, in std
    return std(axis=axis, dtype=dtype, out=out, ddof=ddof)
TypeError: std() got an unexpected keyword argument 'dtype'

Thank you!

谢谢!

回答by DSM

They're both right: they just differ on what the default delta degrees of freedom is. np.stduses 0, and DataFrame.stduses 1:

他们都是对的:他们只是在默认的 delta 自由度上有所不同。 np.std使用 0,DataFrame.std使用 1:

>>> prices.std(axis=0, ddof=0)
0    0.323259
1    0.173375
2    0.147740
dtype: float64
>>> prices.std(axis=0, ddof=1)
0    0.395909
1    0.212340
2    0.180943
dtype: float64
>>> np.std(prices.values, axis=0, ddof=0)
array([ 0.32325862,  0.17337503,  0.1477395 ])
>>> np.std(prices.values, axis=0, ddof=1)
array([ 0.39590933,  0.21234018,  0.1809432 ])