Python:从现有列创建一个新列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/30265723/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python: create a new column from existing columns
提问by Kexin Xu
I am trying to create a new column based on both columns. Say I want to create a new column z, and it should be the value of y when it is not missing and be the value of x when y is indeed missing. So in this case, I expect z to be [1, 8, 10, 8]
.
我正在尝试基于两列创建一个新列。假设我想创建一个新列 z,它应该是 y 没有缺失时的值,当 y 确实缺失时它应该是 x 的值。所以在这种情况下,我希望 z 是[1, 8, 10, 8]
。
x y
0 1 NaN
1 2 8
2 4 10
3 8 NaN
采纳答案by Vidhya G
The new column 'z'
get its values from column 'y'
using df['z'] = df['y']
. This brings over the missing values so fill them in using fillna
using column 'x'
. Chain these two actions:
新'z'
列'y'
使用df['z'] = df['y']
. 这会带来缺失值,因此使用fillna
using column填充它们'x'
。将这两个动作串联起来:
>>> df['z'] = df['y'].fillna(df['x'])
>>> df
x y z
0 1 NaN 1
1 2 8 8
2 4 10 10
3 8 NaN 8
回答by Red Twoon
I'm not sure if I understand the question, but would this be what you're looking for?
我不确定我是否理解这个问题,但这会是你要找的吗?
"if y[i]" will skip if the value is none.
如果值为 none,“if y[i]”将跳过。
for i in range(len(x));
if y[i]:
z.append(y[i])
else:
z.append(x[i])
回答by Kyler Brown
Let's say DataFrame is called df
. First copy the y
column.
假设 DataFrame 被调用df
。首先复制y
列。
df["z"] = df["y"].copy()
Then set the nan locations of z to the locations in x where the nans are in z.
然后将 z 的 nan 位置设置为 x 中 nan 在 z 中的位置。
import numpy as np
df.z[np.isnan(df.z)]=df.x[np.isnan(df.z)]
>>> df
x y z
0 1 NaN 1
1 2 8 8
2 4 10 10
3 8 NaN 8
回答by EdChum
Use np.where
:
使用np.where
:
In [3]:
df['z'] = np.where(df['y'].isnull(), df['x'], df['y'])
df
Out[3]:
x y z
0 1 NaN 1
1 2 8 8
2 4 10 10
3 8 NaN 8
Here it uses the boolean condition and if true returns df['x']
else df['y']
这里它使用布尔条件,如果为真则返回df['x']
其他df['y']
回答by Haleemur Ali
You can use apply
with option axis=1
. Then your solution is pretty concise.
您可以apply
与选项一起使用axis=1
。那么您的解决方案非常简洁。
df[z] = df.apply(lambda row: row.y if pd.notnull(row.y) else row.x, axis=1)
回答by ari
The update
method does almost exactly this. The only caveat is that update
will do so in place so you must first create a copy:
该update
方法几乎就是这样做的。唯一需要注意的是,这update
将就地进行,因此您必须先创建一个副本:
df['z'] = df.x.copy()
df.z.update(df.y)
In the above example you start with x
and replace each value with the corresponding value from y
, as long as the new value is not NaN
.
在上面的示例中,只要新值不是 ,您就可以从 开始x
并将每个值替换y
为来自 的相应值NaN
。