通过分隔符pandas python拆分列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/37333299/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 19:14:20  来源:igfitidea点击:

splitting a column by delimiter pandas python

pythonpandas

提问by Jessica

i have a small sample data:

我有一个小样本数据:

import pandas as pd

df = {'ID': [3009, 129,119,120,121,122,130,3014,266,849,174,844 ],
  'V': ['IGHV7-B*01','IGHV7-B*01','IGHV6-A*01','GHV6-A*01','IGHV6-A*01','IGHV6-A*01','IGHV4-L*03','IGHV4-L*03','IGHV5-A*01','IGHV5-A*04','IGHV6-A*02','IGHV6-A*02'],
  'Prob': [1,1,0.8,0.8056,0.9,0.805 ,1,1,0.997,0.401,1,1]}


df = pd.DataFrame(df)

looks like

好像

df    

Out[25]: 
      ID    Prob           V
0    3009  1.0000  IGHV7-B*01
1     129  1.0000  IGHV7-B*01
2     119  0.8000  IGHV6-A*01
3     120  0.8056  IGHV6-A*01
4     121  0.9000  IGHV6-A*01
5     122  0.8050  IGHV6-A*01
6     130  1.0000  IGHV4-L*03
7    3014  1.0000  IGHV4-L*03
8     266  0.9970  IGHV5-A*01
9     849  0.4010  IGHV5-A*04
10    174  1.0000  IGHV6-A*02
11    844  1.0000  IGHV6-A*02

I want to split the column 'V' by the '-' delimiter and move it to another column named 'allele'

我想用“-”分隔符拆分“V”列并将其移动到名为“等位基因”的另一列

    Out[25]: 
      ID    Prob      V    allele
0    3009  1.0000  IGHV7    B*01
1     129  1.0000  IGHV7    B*01
2     119  0.8000  IGHV6    A*01
3     120  0.8056  IGHV6    A*01
4     121  0.9000  IGHV6    A*01
5     122  0.8050  IGHV6    A*01
6     130  1.0000  IGHV4    L*03
7    3014  1.0000  IGHV4    L*03
8     266  0.9970  IGHV5    A*01
9     849  0.4010  IGHV5    A*04
10    174  1.0000  IGHV6    A*02
11    844  1.0000  IGHV6    A*02

the code i have tried so far is incomplete and didn't work:

到目前为止,我尝试过的代码不完整,无法正常工作:

df1 = pd.DataFrame()
df1[['V']] = pd.DataFrame([ x.split('-') for x in df['V'].tolist() ])

or

或者

df.add(Series, axis='columns', level = None, fill_value = None)
newdata = df.DataFrame({'V':df['V'].iloc[::2].values, 'Allele': df['V'].iloc[1::2].values})

回答by EdChum

Use vectoried str.splitwith expand=True:

使用vectoriedstr.splitexpand=True

In [42]:
df[['V','allele']] = df['V'].str.split('-',expand=True)
df

Out[42]:
      ID    Prob      V allele
0   3009  1.0000  IGHV7   B*01
1    129  1.0000  IGHV7   B*01
2    119  0.8000  IGHV6   A*01
3    120  0.8056   GHV6   A*01
4    121  0.9000  IGHV6   A*01
5    122  0.8050  IGHV6   A*01
6    130  1.0000  IGHV4   L*03
7   3014  1.0000  IGHV4   L*03
8    266  0.9970  IGHV5   A*01
9    849  0.4010  IGHV5   A*04
10   174  1.0000  IGHV6   A*02
11   844  1.0000  IGHV6   A*02

回答by Lukas

For storing data into a new dataframe use the same approach, just with the new dataframe:

要将数据存储到新数据帧中,请使用相同的方法,只需使用新数据帧:

tmpDF = pd.DataFrame(columns=['A','B'])
tmpDF[['A','B']] = df['V'].str.split('-', expand=True)

Eventually (and more usefull for my purposes) if you would need get only a part of the string value (i.e. text before '-'), you could use .str.split(...).str[idx] like:

最终(并且对我的目的更有用)如果您只需要获取字符串值的一部分(即“-”之前的文本),您可以使用 .str.split(...).str[idx] ,例如:

df['V'] = df['V'].str.split('-').str[0]
df
    ID      V       Prob
0   3009    IGHV7   1.0000
1   129     IGHV7   1.0000
2   119     IGHV6   0.8000
3   120     GHV6    0.8056

- splits 'V' values into list according to separator '-' and stores 1st item back to the column

- 根据分隔符“-”将“V”值拆分为列表并将第一个项目存储回列