Python 如何在数据框中使用 word_tokenize
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/33098040/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
how to use word_tokenize in data frame
提问by eclairs
I have recently started using the nltk module for text analysis. I am stuck at a point. I want to use word_tokenize on a dataframe, so as to obtain all the words used in a particular row of the dataframe.
我最近开始使用 nltk 模块进行文本分析。我被困在了一个点上。我想在数据帧上使用 word_tokenize,以便获取数据帧特定行中使用的所有单词。
data example:
text
1. This is a very good site. I will recommend it to others.
2. Can you please give me a call at 9983938428. have issues with the listings.
3. good work! keep it up
4. not a very helpful site in finding home decor.
expected output:
1. 'This','is','a','very','good','site','.','I','will','recommend','it','to','others','.'
2. 'Can','you','please','give','me','a','call','at','9983938428','.','have','issues','with','the','listings'
3. 'good','work','!','keep','it','up'
4. 'not','a','very','helpful','site','in','finding','home','decor'
Basically, i want to separate all the words and find the length of each text in the dataframe.
基本上,我想分离所有单词并找到数据框中每个文本的长度。
I know word_tokenize can for it for a string, but how to apply it onto the entire dataframe?
我知道 word_tokenize 可以用于字符串,但是如何将其应用于整个数据帧?
Please help!
请帮忙!
Thanks in advance...
提前致谢...
采纳答案by Gregg
You can use applymethod of DataFrame API:
您可以使用DataFrame API 的apply方法:
import pandas as pd
import nltk
df = pd.DataFrame({'sentences': ['This is a very good site. I will recommend it to others.', 'Can you please give me a call at 9983938428. have issues with the listings.', 'good work! keep it up']})
df['tokenized_sents'] = df.apply(lambda row: nltk.word_tokenize(row['sentences']), axis=1)
Output:
输出:
>>> df
sentences \
0 This is a very good site. I will recommend it ...
1 Can you please give me a call at 9983938428. h...
2 good work! keep it up
tokenized_sents
0 [This, is, a, very, good, site, ., I, will, re...
1 [Can, you, please, give, me, a, call, at, 9983...
2 [good, work, !, keep, it, up]
For finding the length of each text try to use applyand lambda functionagain:
要查找每个文本的长度,请尝试再次使用apply和 lambda 函数:
df['sents_length'] = df.apply(lambda row: len(row['tokenized_sents']), axis=1)
>>> df
sentences \
0 This is a very good site. I will recommend it ...
1 Can you please give me a call at 9983938428. h...
2 good work! keep it up
tokenized_sents sents_length
0 [This, is, a, very, good, site, ., I, will, re... 14
1 [Can, you, please, give, me, a, call, at, 9983... 15
2 [good, work, !, keep, it, up] 6
回答by Harsha Manjunath
pandas.Series.applyis faster than pandas.DataFrame.apply
pandas.Series.apply比 pandas.DataFrame.apply 快
import pandas as pd
import nltk
df = pd.read_csv("/path/to/file.csv")
start = time.time()
df["unigrams"] = df["verbatim"].apply(nltk.word_tokenize)
print "series.apply", (time.time() - start)
start = time.time()
df["unigrams2"] = df.apply(lambda row: nltk.word_tokenize(row["verbatim"]), axis=1)
print "dataframe.apply", (time.time() - start)
On a sample 125 MB csv file,
在示例 125 MB csv 文件中,
series.apply 144.428858995
系列.申请 144.428858995
dataframe.apply 201.884778976
dataframe.apply 201.884778976
Edit: You could be thinking the Dataframe dfafter series.apply(nltk.word_tokenize)is larger in size, which might affect the runtime for the next operation dataframe.apply(nltk.word_tokenize).
编辑:您可能认为series.apply(nltk.word_tokenize)之后的 Dataframe df 的尺寸更大,这可能会影响下一个操作dataframe.apply(nltk.word_tokenize)的运行时间。
Pandas optimizes under the hood for such a scenario. I got a similar runtime of 200sby only performing dataframe.apply(nltk.word_tokenize) separately.
Pandas 针对这种情况在幕后进行了优化。我仅通过单独执行 dataframe.apply(nltk.word_tokenize)获得了类似的200秒运行时间。
回答by Bryce Chamberlain
May need to add str() to convert to pandas' object type to a string.
可能需要添加 str() 以将 pandas 的对象类型转换为字符串。
Keep in mind a faster way to count words is often to count spaces.
请记住,计算单词的更快方法通常是计算空格。
Interesting that tokenizer counts periods. May want to remove those first, maybe also remove numbers. Un-commenting the line below will result in equal counts, at least in this case.
有趣的是分词器计算句点。可能想先删除那些,也可能删除数字。取消注释下面的行将导致相等的计数,至少在这种情况下。
import nltk
import pandas as pd
sentences = pd.Series([
'This is a very good site. I will recommend it to others.',
'Can you please give me a call at 9983938428. have issues with the listings.',
'good work! keep it up',
'not a very helpful site in finding home decor. '
])
# remove anything but characters and spaces
sentences = sentences.str.replace('[^A-z ]','').str.replace(' +',' ').str.strip()
splitwords = [ nltk.word_tokenize( str(sentence) ) for sentence in sentences ]
print(splitwords)
# output: [['This', 'is', 'a', 'very', 'good', 'site', 'I', 'will', 'recommend', 'it', 'to', 'others'], ['Can', 'you', 'please', 'give', 'me', 'a', 'call', 'at', 'have', 'issues', 'with', 'the', 'listings'], ['good', 'work', 'keep', 'it', 'up'], ['not', 'a', 'very', 'helpful', 'site', 'in', 'finding', 'home', 'decor']]
wordcounts = [ len(words) for words in splitwords ]
print(wordcounts)
# output: [12, 13, 5, 9]
wordcounts2 = [ sentence.count(' ') + 1 for sentence in sentences ]
print(wordcounts2)
# output: [12, 13, 5, 9]
If you aren't using Pandas, you might not need str()
如果您不使用 Pandas,则可能不需要 str()