Python 从列表中删除 nan
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/45695373/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Removing a nan from a list
提问by ???? ?????
While trying to work on a project with pandas I have run into a problem. I had a list with a nan
value in it and I couldn't remove it.
在尝试使用 Pandas 进行项目时,我遇到了一个问题。我有一个包含nan
值的列表,但无法删除它。
I have tried:
我试过了:
incoms=data['int_income'].unique().tolist()
incoms.remove('nan')
But it didn't work:
但它没有用:
list.remove(x): x not in list"
list.remove(x): x 不在列表中”
The list incoms
is as follows:
名单incoms
如下:
[75000.0, 50000.0, 0.0, 200000.0, 100000.0, 25000.0, nan, 10000.0, 175000.0, 150000.0, 125000.0]
回答by jezrael
I think you need dropna
for remove NaN
s:
我认为您需要dropna
删除NaN
s:
incoms=data['int_income'].dropna().unique().tolist()
print (incoms)
[75000.0, 50000.0, 0.0, 200000.0, 100000.0, 25000.0, 10000.0, 175000.0, 150000.0, 125000.0]
And if all values are integers only:
如果所有值都只是整数:
incoms=data['int_income'].dropna().astype(int).unique().tolist()
print (incoms)
[75000, 50000, 0, 200000, 100000, 25000, 10000, 175000, 150000, 125000]
Or remove NaN
s by selecting all non NaN values by numpy.isnan
:
或者NaN
通过以下方式选择所有非 NaN 值来删除s numpy.isnan
:
a = data['int_income'].unique()
incoms= a[~np.isnan(a)].tolist()
print (incoms)
[75000.0, 50000.0, 0.0, 200000.0, 100000.0, 25000.0, 10000.0, 175000.0, 150000.0, 125000.0]
a = data['int_income'].unique()
incoms= a[~np.isnan(a)].astype(int).tolist()
print (incoms)
[75000, 50000, 0, 200000, 100000, 25000, 10000, 175000, 150000, 125000]
Pure python solution - slowier if big DataFrame
:
纯 python 解决方案 - 如果大则更慢DataFrame
:
incoms=[x for x in list(set(data['int_income'])) if pd.notnull(x)]
print (incoms)
[0.0, 100000.0, 200000.0, 25000.0, 125000.0, 50000.0, 10000.0, 150000.0, 175000.0, 75000.0]
incoms=[int(x) for x in list(set(data['int_income'])) if pd.notnull(x)]
print (incoms)
[0, 100000, 200000, 25000, 125000, 50000, 10000, 150000, 175000, 75000]
回答by zoubida13
What you can do is simply get a cleaned list where you don't put the values that, once converted to strings, are 'nan'.
您可以做的只是获得一个清理过的列表,您不要在其中放置一旦转换为字符串的值为“nan”的值。
The code would be :
代码将是:
incoms = [incom for incom in incoms if str(incom) != 'nan']
回答by Rafael Valero
A possibility in that particular case is to remove nans earlier to avoid to do it in the list:
在这种特殊情况下的一种可能性是提前删除 nans 以避免在列表中执行它:
incoms=data['int_income'].dropna().unique().tolist()