pandas 如何按一列分组并对另一列的值进行排序?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/40666126/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to group by one column and sort the values of another column?
提问by user1700890
Here is my dataframe
这是我的数据框
import pandas as pd
df = pd.DataFrame({'A': ['one', 'one', 'two', 'two', 'one'] ,
'B': ['Ar', 'Br', 'Cr', 'Ar','Ar'] ,
'C': ['12/15/2011', '11/11/2001', '08/30/2015', '07/3/1999','03/03/2000' ],
'D':[1,7,3,4,5]})
My goal is to group by column A
and sort within grouped results by column B
.
我的目标是按列A
分组并按列对分组结果进行排序B
。
Here is what I came up with:
这是我想出的:
sort_group = df.sort_values('B').groupby('A')
I was hoping that grouping operation would not distort order, but it does not work and also returns not a dataframe, but groupby
object
我希望分组操作不会扭曲顺序,但它不起作用并且返回的不是数据帧,而是groupby
对象
<pandas.core.groupby.DataFrameGroupBy object at 0x0000000008B190B8>
Any suggestions?
有什么建议?
回答by Cleb
You cannot apply sort_values
directly to a groupby
object but you need an apply
:
您不能sort_values
直接应用于groupby
对象,但您需要一个apply
:
df.groupby('A').apply(lambda x: x.sort_values('B'))
gives you the desired output:
为您提供所需的输出:
A B C D
A
one 0 one Ar 12/15/2011 1
4 one Ar 03/03/2000 5
1 one Br 11/11/2001 7
two 3 two Ar 07/3/1999 4
2 two Cr 08/30/2015 3