pandas 用随机值替换数据框中的 NaN
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/30647247/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Replace NaN in a dataframe with random values
提问by Sam
I have a data frame (data_train) with NaN values, A sample is given below:
我有一个带有 NaN 值的数据框 (data_train),下面给出了一个示例:
republican n y
republican n NaN
democrat NaN n
democrat n y
I want to replace all the NaN with some random values like .
我想用一些随机值替换所有的 NaN,比如 .
republican n y
republican n rnd2
democrat rnd1 n
democrat n y
How do I do it.
我该怎么做。
I tried the following, but had no luck:
我尝试了以下方法,但没有运气:
df_rand = pd.DataFrame(np.random.randn(data_train.shape[0],data_train.shape[1]))
data_train[pd.isnull(data_train)] = dfrand[pd.isnull(data_train)]
when I do the above with a dataframe with random numerical data the above script works fine.
当我使用带有随机数字数据的数据框执行上述操作时,上述脚本工作正常。
回答by fixxxer
Well, if you use fillnato fill the NaN, a random generator works only once and will fill all N/As with the same number.
好吧,如果你fillna用来填充NaN,随机生成器只工作一次,并且会用相同的数字填充所有 N/As。
So, make sure that a random number is generated and used each time. For a dataframe like this :
因此,请确保每次生成并使用随机数。对于这样的数据框:
Date A B
0 2015-01-01 NaN NaN
1 2015-01-02 NaN NaN
2 2015-01-03 NaN NaN
3 2015-01-04 NaN NaN
4 2015-01-05 NaN NaN
5 2015-01-06 NaN NaN
6 2015-01-07 NaN NaN
7 2015-01-08 NaN NaN
8 2015-01-09 NaN NaN
9 2015-01-10 NaN NaN
10 2015-01-11 NaN NaN
11 2015-01-12 NaN NaN
12 2015-01-13 NaN NaN
13 2015-01-14 NaN NaN
14 2015-01-15 NaN NaN
15 2015-01-16 NaN NaN
I used the following code to fill up the NaNsin column A:
我使用以下代码填写NaNsA 列:
import random
x['A'] = x['A'].apply(lambda v: random.random() * 1000)
Which will give us something like:
这会给我们一些类似的东西:
Date A B
0 2015-01-01 96.538211 NaN
1 2015-01-02 404.683392 NaN
2 2015-01-03 849.614253 NaN
3 2015-01-04 590.030660 NaN
4 2015-01-05 203.167519 NaN
5 2015-01-06 980.508258 NaN
6 2015-01-07 221.088002 NaN
7 2015-01-08 285.013762 NaN
回答by Abramodj
You can use the pandas updatecommand, this way:
您可以通过以下方式使用 pandas update命令:
1) Generate a random DataFrame with the same columns and index as the original one:
1) 生成一个与原始数据帧具有相同列和索引的随机数据帧:
import numpy as np; import pandas as pd
M = len(df.index)
N = len(df.columns)
ran = pd.DataFrame(np.random.randn(M,N), columns=df.columns, index=df.index)
2) Then use update, so that the NaN values in dfwill be replaced by the generated random values
2) 然后使用update,这样 中的 NaN 值df将被生成的随机值替换
df.update(ran)
In the above example I used values from a standard normal, but you can also use values randomly picked from the original DataFrame:
在上面的示例中,我使用了标准法线中的值,但您也可以使用从原始 DataFrame 中随机选取的值:
import numpy as np; import pandas as pd
M = len(df.index)
N = len(df.columns)
val = np.ravel(df.values)
val = val[~np.isnan(val)]
val = np.random.choice(val, size=(M,N))
ran = pd.DataFrame(val, columns=df.columns, index=df.index)
df.update(ran)
回答by Mangnier Lo?c
If you want to replace NaN in your column with hot deck technique, I can propose way like this :
如果你想用热甲板技术替换你的列中的 NaN,我可以提出这样的方法:
def hot_deck(dataframe) :
dataframe = dataframe.fillna(0)
for col in dataframe.columns :
assert (dataframe[col].dtype == np.float64) | (dataframe[col].dtype == np.int64)
liste_sample = dataframe[dataframe[col] != 0][col].unique()
dataframe[col] = dataframe.apply(lambda row : random.choice(liste_sample) if row[col] == 0 else row[col],axis=1)
return dataframe
After if you prefer just replace NaN with a new random value for each iteration you can do a thing like that. You've just to determine the max value of your random choices.
之后,如果您更愿意为每次迭代用新的随机值替换 NaN,您可以做这样的事情。您只需确定随机选择的最大值。
def hot_deck(dataframe,max_value) :
dataframe = dataframe.fillna(0)
for col in dataframe.columns :
assert (dataframe[col].dtype == np.float64) | (dataframe[col].dtype == np.int64)
liste_sample = random.sample(range(max_value),dataframe.isnull().sum())
dataframe[col] = dataframe.apply(lambda row : random.choice(liste_sample) if row[col] == 0 else row[col],axis=1)
return dataframe
回答by farhawa
Just use fillnathis way
就用fillna这种方式
import random
data_train.fillna(random.random())

