使用 python/pandas 中范围内的数字重命名列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/42847441/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Renaming columns using numbers from a range in python/pandas
提问by elanamig
I'm stuck with the following situation. I'm pretty sure I'm missing something simple, but I tried a lot of suggestions here and at other sites, and haven't found what I'm looking for.
我被以下情况困住了。我很确定我错过了一些简单的东西,但是我在这里和其他网站上尝试了很多建议,但没有找到我要找的东西。
I have a dataframe with a lot of randomly named columns (courtesy of provided csv file). I would like to rename these columns using digits from the range function.
我有一个包含许多随机命名列的数据框(由提供的 csv 文件提供)。我想使用 range 函数中的数字重命名这些列。
Since I'm renaming all columns, I could do it directly using
由于我要重命名所有列,因此可以直接使用
df.columns = [str(x) for x in range(1,2000)]
However, hypothetically, could I do it through the rename() function? Maybe using a lambda? I have tried many different variations, but I'm getting all sorts of errors. I'm looking for the syntax to give me the equivalent of
但是,假设我可以通过 rename() 函数来完成吗?也许使用lambda?我尝试了许多不同的变体,但我遇到了各种各样的错误。我正在寻找语法给我相当于
df.rename(columns= (str(x) for x in range(1,2000)))
where rename assigns the name to the columns sequentially based on the given range. The above does't work. But is there a way to make it work?
其中 rename 根据给定的范围将名称按顺序分配给列。以上是行不通的。但是有没有办法让它发挥作用?
Thank you!
谢谢!
回答by mechanical_meat
You can pass a dict
to rename's columns
kwarg:
您可以通过 adict
来重命名columns
kwarg:
df.rename(columns={x:y for x,y in zip(df.columns,range(0,len(df.columns)))})
That will take:
这将需要:
>>> df ID1 ID2 POS1 POS2 TYPE TYPEVAL 1 A 001 1 5 COLOR RED 2 A 001 1 5 WEIGHT 50KG 3 A 001 1 5 HEIGHT 160CM 4 A 002 6 19 FUTURE YES 5 A 002 6 19 PRESENT NO 6 B 001 26 34 COLOUR BLUE 7 B 001 26 34 WEIGHT 85KG 8 B 001 26 34 HEIGHT 120CM 9 C 001 10 13 MOBILE NOKIA 10 C 001 10 13 TABLET ASUS
And give you:
并给你:
>>> df.rename(columns={x:y for x,y in zip(df.columns,range(0,len(df.columns)))}) 0 1 2 3 4 5 1 A 001 1 5 COLOR RED 2 A 001 1 5 WEIGHT 50KG 3 A 001 1 5 HEIGHT 160CM 4 A 002 6 19 FUTURE YES 5 A 002 6 19 PRESENT NO 6 B 001 26 34 COLOUR BLUE 7 B 001 26 34 WEIGHT 85KG 8 B 001 26 34 HEIGHT 120CM 9 C 001 10 13 MOBILE NOKIA 10 C 001 10 13 TABLET ASUS
回答by Joe T. Boka
If you just want to rename the columns using numbers, this is probably the easiest way to do it:
如果您只想使用数字重命名列,这可能是最简单的方法:
df.columns = np.arange(len(df.columns))
Demo:
演示:
df = pd.DataFrame({'A':['a', 'b', 'c'], 'B': ['d','e','f'], 'C': ['g','h','i']})
print(df)
A B C
0 a d g
1 b e h
2 c f i
Renaming the columns:
重命名列:
df.columns = np.arange(len(df.columns))
print(df)
0 1 2
0 a d g
1 b e h
2 c f i