pandas 熊猫在日期列问题上合并

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/42812216/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:12:03  来源:igfitidea点击:

pandas merge on date column issue

pythonpandasmergedata-manipulation

提问by muon

I am trying to merge two dataframes on date column (tried both as type objector datetime.date, but fails to give desired merge output:

我正在尝试合并日期列上的两个数据框(都尝试将其作为 typeobjectdatetime.date,但未能提供所需的合并输出:

import pandas as pd
df1 =  pd.DataFrame({'amt': {0: 1549367.9496070854,
      1: 2175801.78219801,
      2: 1915613.1629125737,
      3: 1703063.8323954903,
      4: 1770040.7987461537},
     'month': {0: '2015-02-01',
      1: '2015-03-01',
      2: '2015-04-01',
      3: '2015-05-01',
      4: '2015-06-01'}})
print(df1)


        amt             month
    0   1.549368e+06    2015-02-01
    1   2.175802e+06    2015-03-01
    2   1.915613e+06    2015-04-01
    3   1.703064e+06    2015-05-01
    4   1.770041e+06    2015-06-01



df2 =  {'factor': {datetime.date(2015, 2, 1): 1.0,
      datetime.date(2015, 3, 1): 1.0,
      datetime.date(2015, 4, 1): 1.0,
      datetime.date(2015, 5, 1): 1.0,
      datetime.date(2015, 6, 1): 0.99889679025914435},
     'month': {datetime.date(2015, 2, 1): datetime.date(2015, 2, 1),
      datetime.date(2015, 3, 1): datetime.date(2015, 3, 1),
      datetime.date(2015, 4, 1): datetime.date(2015, 4, 1),
      datetime.date(2015, 5, 1): datetime.date(2015, 5, 1),
      datetime.date(2015, 6, 1): datetime.date(2015, 6, 1)}}
df2 = pd.DataFrame(df2)
print(df2)

                factor      month
    2015-02-01  1.000000    2015-02-01
    2015-03-01  1.000000    2015-03-01
    2015-04-01  1.000000    2015-04-01
    2015-05-01  1.000000    2015-05-01
    2015-06-01  0.998897    2015-06-01


pd.merge(df2, df1, how='outer', on='month')

        factor       month            amt
    0   1.000000     2015-02-01      NaN
    1   1.000000     2015-03-01      NaN
    2   1.000000     2015-04-01      NaN
    3   1.000000     2015-05-01      NaN
    4   0.998897     2015-06-01      NaN
    5   NaN           2015-02-01    1.549368e+06
    6   NaN           2015-03-01    2.175802e+06
    7   NaN           2015-04-01    1.915613e+06
    8   NaN           2015-05-01    1.703064e+06
    9   NaN           2015-06-01    1.770041e+06

回答by jezrael

I think you need first convert both columns to_datetimebecause need same dtypes:

我认为您需要首先转换两列,to_datetime因为需要相同dtypes

df1.month = pd.to_datetime(df1.month)
df2.month = pd.to_datetime(df2.month)

print (pd.merge(df2, df1, how='outer', on='month'))
     factor      month           amt
0  1.000000 2015-02-01  1.549368e+06
1  1.000000 2015-03-01  2.175802e+06
2  1.000000 2015-04-01  1.915613e+06
3  1.000000 2015-05-01  1.703064e+06
4  0.998897 2015-06-01  1.770041e+06


#convert to str date column
df2.month = df2.month.astype(str)

print (pd.merge(df2, df1, how='outer', on='month'))
     factor       month           amt
0  1.000000  2015-02-01  1.549368e+06
1  1.000000  2015-03-01  2.175802e+06
2  1.000000  2015-04-01  1.915613e+06
3  1.000000  2015-05-01  1.703064e+06
4  0.998897  2015-06-01  1.770041e+06