Python 计算pandas DataFrame中缺失值的行数的最佳方法
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/28199524/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Best way to count the number of rows with missing values in a pandas DataFrame
提问by
I currently came up with some work arounds to count the number of missing values in a pandas DataFrame
. Those are quite ugly and I am wondering if there is a better way to do it.
我目前想出了一些解决方法来计算 pandas 中缺失值的数量DataFrame
。这些很丑陋,我想知道是否有更好的方法来做到这一点。
Let's create an example DataFrame
:
让我们创建一个例子DataFrame
:
from numpy.random import randn
df = pd.DataFrame(randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
What I currently have is
我目前拥有的是
a) Counting cells with missing values:
a) 计数缺失值的单元格:
>>> sum(df.isnull().values.ravel())
9
b) Counting rows that have missing values somewhere:
b) 计算某处缺失值的行:
>>> sum([True for idx,row in df.iterrows() if any(row.isnull())])
3
采纳答案by EdChum
For the second count I think just subtract the number of rows from the number of rows returned from dropna
:
对于第二个计数,我认为只需从从返回的行数中减去行数dropna
:
In [14]:
from numpy.random import randn
df = pd.DataFrame(randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
df
Out[14]:
one two three
a -0.209453 -0.881878 3.146375
b NaN NaN NaN
c 0.049383 -0.698410 -0.482013
d NaN NaN NaN
e -0.140198 -1.285411 0.547451
f -0.219877 0.022055 -2.116037
g NaN NaN NaN
h -0.224695 -0.025628 -0.703680
In [18]:
df.shape[0] - df.dropna().shape[0]
Out[18]:
3
The first could be achieved using the built in methods:
第一个可以使用内置方法实现:
In [30]:
df.isnull().values.ravel().sum()
Out[30]:
9
Timings
时间安排
In [34]:
%timeit sum([True for idx,row in df.iterrows() if any(row.isnull())])
%timeit df.shape[0] - df.dropna().shape[0]
%timeit sum(map(any, df.apply(pd.isnull)))
1000 loops, best of 3: 1.55 ms per loop
1000 loops, best of 3: 1.11 ms per loop
1000 loops, best of 3: 1.82 ms per loop
In [33]:
%timeit sum(df.isnull().values.ravel())
%timeit df.isnull().values.ravel().sum()
%timeit df.isnull().sum().sum()
1000 loops, best of 3: 215 μs per loop
1000 loops, best of 3: 210 μs per loop
1000 loops, best of 3: 605 μs per loop
So my alternatives are a little faster for a df of this size
所以我的替代方案对于这种大小的 df 来说要快一点
Update
更新
So for a df with 80,000 rows I get the following:
因此,对于具有 80,000 行的 df,我得到以下信息:
In [39]:
%timeit sum([True for idx,row in df.iterrows() if any(row.isnull())])
%timeit df.shape[0] - df.dropna().shape[0]
%timeit sum(map(any, df.apply(pd.isnull)))
%timeit np.count_nonzero(df.isnull())
1 loops, best of 3: 9.33 s per loop
100 loops, best of 3: 6.61 ms per loop
100 loops, best of 3: 3.84 ms per loop
1000 loops, best of 3: 395 μs per loop
In [40]:
%timeit sum(df.isnull().values.ravel())
%timeit df.isnull().values.ravel().sum()
%timeit df.isnull().sum().sum()
%timeit np.count_nonzero(df.isnull().values.ravel())
1000 loops, best of 3: 675 μs per loop
1000 loops, best of 3: 679 μs per loop
100 loops, best of 3: 6.56 ms per loop
1000 loops, best of 3: 368 μs per loop
Actually np.count_nonzero
wins this hands down.
实际上np.count_nonzero
赢得了这一手。
回答by ely
Total missing:
总失踪:
df.isnull().sum().sum()
Rows with missing:
缺少的行:
sum(map(any, df.isnull()))
回答by Paul Jtheitroademan
What about numpy.count_nonzero
:
怎么样numpy.count_nonzero
:
np.count_nonzero(df.isnull().values)
np.count_nonzero(df.isnull()) # also works
count_nonzero
is pretty quick. However, I constructed a dataframe from a (1000,1000) array and randomly inserted 100 nan values at different positions and measured the times of the various answers in iPython:
count_nonzero
很快。但是,我从一个 (1000,1000) 数组构建了一个数据框,并在不同位置随机插入了 100 个 nan 值,并测量了 iPython 中各种答案的时间:
%timeit np.count_nonzero(df.isnull().values)
1000 loops, best of 3: 1.89 ms per loop
%timeit df.isnull().values.ravel().sum()
100 loops, best of 3: 3.15 ms per loop
%timeit df.isnull().sum().sum()
100 loops, best of 3: 15.7 ms per loop
Not a huge time improvement over the OPs original but possibly less confusing in the code, your decision. There isn't really any difference in execution time
between the two count_nonzero
methods (with and without .values
).
与原始 OP 相比,时间改进不大,但代码中的混乱程度可能会降低,您的决定。这两种count_nonzero
方法(有和没有.values
)之间的执行时间实际上没有任何区别。
回答by Alvaro Fuentes
A simple approach to counting the missing values in the rows or in the columns
计算行或列中缺失值的简单方法
df.apply(lambda x: sum(x.isnull().values), axis = 0) # For columns
df.apply(lambda x: sum(x.isnull().values), axis = 1) # For rows
Number of rows with at least one missing value:
至少有一个缺失值的行数:
sum(df.apply(lambda x: sum(x.isnull().values), axis = 1)>0)
回答by W.P. McNeill
sum(df.count(axis=1) < len(df.columns))
, the number of rows that have fewer non-nulls than columns.
sum(df.count(axis=1) < len(df.columns))
,非空值少于列的行数。
For example, the following data frame has two rows with missing values.
例如,以下数据框有两行缺失值。
>>> df = pd.DataFrame({"a":[1, None, 3], "b":[4, 5, None]})
>>> df
a b
0 1 4
1 NaN 5
2 3 NaN
>>> df.count(axis=1)
0 2
1 1
2 1
dtype: int64
>>> df.count(axis=1) < len(df.columns)
0 False
1 True
2 True
dtype: bool
>>> sum(df.count(axis=1) < len(df.columns))
2
回答by ConanG
So many wrong answers here. OP asked for number of rows with null values, not columns.
这里有很多错误的答案。OP 要求具有空值的行数,而不是列数。
Here is a better example:
这是一个更好的例子:
from numpy.random import randn
df = pd.DataFrame(randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one','two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h','asdf'])
print(df)
`Now there is obviously 4 rows with null values.
`现在显然有 4 行具有空值。
one two three
a -0.571617 0.952227 0.030825
b NaN NaN NaN
c 0.627611 -0.462141 1.047515
d NaN NaN NaN
e 0.043763 1.351700 1.480442
f 0.630803 0.931862 1.500602
g NaN NaN NaN
h 0.729103 -1.198237 -0.207602
asdf NaN NaN NaN
You would get answer as 3 (number of columns with NaNs) if you used some of the answers here. Fuentes' answer works.
如果您在这里使用了一些答案,您将得到 3(包含 NaN 的列数)的答案。富恩特斯的回答有效。
Here is how I got it:
这是我得到它的方法:
df.isnull().any(axis=1).sum()
#4
timeit df.isnull().any(axis=1).sum()
#10000 loops, best of 3: 193 μs per loop
'Fuentes':
'富恩特斯':
sum(df.apply(lambda x: sum(x.isnull().values), axis = 1)>0)
#4
timeit sum(df.apply(lambda x: sum(x.isnull().values), axis = 1)>0)
#1000 loops, best of 3: 677 μs per loop
回答by ruining.z
I think if you just wanna take a look the result, there is a pandas func pandas.DataFrame.count.
我想如果你只是想看看结果,有一个 pandas func pandas.DataFrame.count。
So back to this topic, using df.count(axis=1)
, and u will get the result like this:
所以回到这个话题,使用df.count(axis=1)
, 你会得到这样的结果:
a 3
b 0
c 3
d 0
e 3
f 3
g 0
h 3
dtype: int64
It will tell you how many non-NaN parameters in each row. Meanwhile,
-(df.count(axis=1) - df.shape[1])
indicates
它会告诉你每行有多少非 NaN 参数。同时,
-(df.count(axis=1) - df.shape[1])
表示
a 0
b 3
c 0
d 3
e 0
f 0
g 3
h 0
dtype: int64