将月份添加到 Pandas 中的日期时间列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/30328427/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Add months to a datetime column in pandas
提问by 0nir
I have a dataframe df with 2 columns as below -
我有一个包含 2 列的数据框 df,如下所示 -
START_DATE MONTHS
0 2015-03-21 240
1 2015-03-21 240
2 2015-03-21 240
3 2015-03-21 240
4 2015-03-21 240
5 2015-01-01 120
6 2017-01-01 240
7 NaN NaN
8 NaN NaN
9 NaN NaN
The datatypes of the 2 columns are objects.
2 列的数据类型是对象。
>>> df.dtypes
START_DATE object
MONTHS object
dtype: object
Now, I want to create a new column "Result" by adding df['START_DATE'] & df['MONTHS']. So, I have done the below -
现在,我想通过添加 df['START_DATE'] 和 df['MONTHS'] 来创建一个新列“结果”。所以,我做了以下 -
from dateutil.relativedelta import relativedelta
df['START_DATE'] = pd.to_datetime(df['START_DATE'])
df['MONTHS'] = df['MONTHS'].astype(float)
df['offset'] = df['MONTHS'].apply(lambda x: relativedelta(months=x))
df['Result'] = df['START_DATE'] + df['offset']
Here, I get the below error -
在这里,我收到以下错误 -
TypeError: incompatible type [object] for a datetime/timedelta operation
Note: Wanted to convert df['Months'] to int but wouldn't work as the field had Nulls.
注意:想要将 df['Months'] 转换为 int 但由于该字段具有 Null 值而无法正常工作。
Can you please give me some directions.Thanks.
能给我指点吗 谢谢
回答by Jeff
This is a vectorized way to do this, so should be quite performant. Note that it doesn't handle month crossings / endings (and doesn't deal well with DST changes. I believe that's why you get the times).
这是执行此操作的矢量化方式,因此应该非常高效。请注意,它不处理月份的交叉/结束(并且不能很好地处理 DST 更改。我相信这就是您获得时间的原因)。
In [32]: df['START_DATE'] + df['MONTHS'].values.astype("timedelta64[M]")
Out[32]:
0 2035-03-20 20:24:00
1 2035-03-20 20:24:00
2 2035-03-20 20:24:00
3 2035-03-20 20:24:00
4 2035-03-20 20:24:00
5 2024-12-31 10:12:00
6 2036-12-31 20:24:00
7 NaT
8 NaT
9 NaT
Name: START_DATE, dtype: datetime64[ns]
If you need exact MonthEnd/Begin handling, this is an appropriate method. (Use MonthsOffset to get the same day)
如果您需要精确的 MonthEnd/Begin 处理,这是一个合适的方法。(使用 MonthsOffset 获得同一天)
In [33]: df.dropna().apply(lambda x: x['START_DATE'] + pd.offsets.MonthEnd(x['MONTHS']), axis=1)
Out[33]:
0 2035-02-28
1 2035-02-28
2 2035-02-28
3 2035-02-28
4 2035-02-28
5 2024-12-31
6 2036-12-31
dtype: datetime64[ns]
回答by Kathirmani Sukumar
Use the following if your dataframe is small. I have used axis=1, which is row wise operation. If your dataframe is large, it will be very slow
如果您的数据框很小,请使用以下内容。我使用过axis=1,这是行明智的操作。如果你的数据框很大,它会很慢
> df['offset'] = df.dropna().apply(lambda v: relativedelta(months=int(v['MONTHS'])) + v['START_DATE'], axis=1)
> df
START_DATE MONTHS offset
0 2015-03-21 240 2035-03-21
1 2015-03-21 240 2035-03-21
2 2015-03-21 240 2035-03-21
3 2015-03-21 240 2035-03-21
4 2015-03-21 240 2035-03-21
5 2015-01-01 120 2025-01-01
6 2017-01-01 240 2037-01-01
7 NaT NaN NaT
8 NaT NaN NaT
9 NaT NaN NaT
回答by selwyth
Here's a way to do it without dateutil.relativedelta. Note that I convert MONTHSto an integer (and only after dropping the null values since intdoesn't accept null values) because I want to do integer division by 12 months per year, exploiting the fact that the quotient is the delta in years and the modulo/remainder is the delta in months.
这是一种无需dateutil.relativedelta. 请注意,我转换MONTHS为整数(并且仅在删除空值之后,因为int不接受空值)因为我想每年除以 12 个月的整数,利用商是年的增量和模的事实/remainder 是以月为单位的增量。
import pandas as pd
df = pd.DataFrame({'START_DATE':['2015-03-21','2015-03-21','2015-03-21','2015-03-21',
'2015-03-21','2015-01-01','2017-01-01', None,None,None],
'MONTHS':[240,240,240,240,240,120,240,None,None,None]},
dtype='object') # replicate example data
df.dropna(inplace=True) # drop nulls so can convert MONTHS to int
df['START_DATE'] = pd.to_datetime(df['START_DATE'])
df['MONTHS'] = df.MONTHS.astype(int)
df.apply(lambda x: pd.datetime(x.START_DATE.year + x.MONTHS / 12,
x.START_DATE.month + x.MONTHS % 12,
x.START_DATE.day), axis=1)
回答by MaxU
Here is yet another vectorizednumpy solution:
这是另一个矢量化的numpy 解决方案:
In [111]: mask = (df.START_DATE.notnull() & df.MONTHS.notnull())
In [112]: df.loc[mask, 'Result'] = (
...: df.START_DATE.loc[mask].values.astype('M8[M]') + \
...: (df.MONTHS.loc[mask].values.astype(int) * np.timedelta64(1, 'M'))
...: ).astype('M8[D]') - np.timedelta64(1, 'D')
...:
In [113]: df
Out[113]:
START_DATE MONTHS Result
0 2015-03-21 240.0 2035-02-28
1 2015-03-21 240.0 2035-02-28
2 2015-03-21 240.0 2035-02-28
3 2015-03-21 240.0 2035-02-28
4 2015-03-21 240.0 2035-02-28
5 2015-01-01 120.0 2024-12-31
6 2017-01-01 240.0 2036-12-31
7 NaT NaN NaT
8 NaT NaN NaT
9 NaT NaN NaT
回答by MANDAR PATIL
In response to Jeff,I think this doesn't work correctly for months which are not a multiple of 12. Like I had initial date as '2020-05-04 (yyyy-mm-dd) and months as 57. But addition gave 2025-02-01 (instead of 2025-02-04).
作为对 Jeff 的回应,我认为这在不是 12 倍数的月份中不能正常工作。就像我的初始日期为 2020-05-04 (yyyy-mm-dd) 和月份为 57。但加法给出了2025-02-01(而不是 2025-02-04)。
init_workbook['CALC_DATE']= init_workbook['STRTDATE']+init_workbook['MONTHS'].values.astype("timedelta64[M]")
>>> init_workbook.head(4)
MONTHS STRTDATE CALC_DATE
0 12 2020-05-04 2021-05-04
1 12 2020-05-04 2021-05-04
2 57 2020-05-04 2025-02-01
3 34 2020-05-20 2023-03-20
Now again if the date is greater than 12 then it gives correct result but if date <12 that's where it fails
现在再次如果日期大于 12 那么它会给出正确的结果但是如果日期 <12 那就是它失败的地方

