Python 将 pandas.Series 从 dtype 对象转换为 float,并将错误转换为 nans

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/25952790/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 23:51:42  来源:igfitidea点击:

Convert pandas.Series from dtype object to float, and errors to nans

pythonpandas

提问by Korem

Consider the following situation:

考虑以下情况:

In [2]: a = pd.Series([1,2,3,4,'.'])

In [3]: a
Out[3]: 
0    1
1    2
2    3
3    4
4    .
dtype: object

In [8]: a.astype('float64', raise_on_error = False)
Out[8]: 
0    1
1    2
2    3
3    4
4    .
dtype: object

I would have expected an option that allows conversion while turning erroneous values (such as that .) to NaNs. Is there a way to achieve this?

我本来希望有一个选项可以在将错误值(例如 that .)转换为NaNs 的同时进行转换。有没有办法实现这一目标?

采纳答案by cs95

Use pd.to_numericwith errors='coerce'

使用pd.to_numericerrors='coerce'

# Setup
s = pd.Series(['1', '2', '3', '4', '.'])
s

0    1
1    2
2    3
3    4
4    .
dtype: object

pd.to_numeric(s, errors='coerce')

0    1.0
1    2.0
2    3.0
3    4.0
4    NaN
dtype: float64

If you need the NaNs filled in, use Series.fillna.

如果您需要NaN填写 s,请使用Series.fillna.

pd.to_numeric(s, errors='coerce').fillna(0, downcast='infer')

0    1
1    2
2    3
3    4
4    0
dtype: float64

Note, downcast='infer'will attempt to downcast floats to integers where possible. Remove the argument if you don't want that.

注意,downcast='infer'将在可能的情况下尝试将浮点数向下转换为整数。如果您不想要,请删除该参数。

From v0.24+, pandas introduces a Nullable Integertype, which allows integers to coexist with NaNs. If you have integers in your column, you can use

pd.__version__
# '0.24.1'

pd.to_numeric(s, errors='coerce').astype('Int32')

0      1
1      2
2      3
3      4
4    NaN
dtype: Int32

There are other options to choose from as well, read the docs for more.

从 v0.24+ 开始,pandas 引入了Nullable Integer类型,它允许整数与 NaN 共存。如果您的列中有整数,则可以使用

pd.__version__
# '0.24.1'

pd.to_numeric(s, errors='coerce').astype('Int32')

0      1
1      2
2      3
3      4
4    NaN
dtype: Int32

还有其他选项可供选择,请阅读文档了解更多信息。



Extension for DataFrames

扩展为 DataFrames

If you need to extend this to DataFrames, you will need to applyit to each row. You can do this using DataFrame.apply.

如果您需要将此扩展到 DataFrames,则需要其应用于每一行。您可以使用DataFrame.apply.

# Setup.
np.random.seed(0)
df = pd.DataFrame({
    'A' : np.random.choice(10, 5), 
    'C' : np.random.choice(10, 5), 
    'B' : ['1', '###', '...', 50, '234'], 
    'D' : ['23', '1', '...', '268', '$$']}
)[list('ABCD')]
df

   A    B  C    D
0  5    1  9   23
1  0  ###  3    1
2  3  ...  5  ...
3  3   50  2  268
4  7  234  4   $$

df.dtypes

A     int64
B    object
C     int64
D    object
dtype: object

df2 = df.apply(pd.to_numeric, errors='coerce')
df2

   A      B  C      D
0  5    1.0  9   23.0
1  0    NaN  3    1.0
2  3    NaN  5    NaN
3  3   50.0  2  268.0
4  7  234.0  4    NaN

df2.dtypes

A      int64
B    float64
C      int64
D    float64
dtype: object

You can also do this with DataFrame.transform; although my tests indicate this is marginally slower:

你也可以用DataFrame.transform; 虽然我的测试表明这稍微慢了一点:

df.transform(pd.to_numeric, errors='coerce')

   A      B  C      D
0  5    1.0  9   23.0
1  0    NaN  3    1.0
2  3    NaN  5    NaN
3  3   50.0  2  268.0
4  7  234.0  4    NaN

If you have many columns (numeric; non-numeric), you can make this a little more performant by applying pd.to_numericon the non-numeric columns only.

如果您有很多列(数字;非数字),您可以通过仅应用pd.to_numeric非数字列来提高性能。

df.dtypes.eq(object)

A    False
B     True
C    False
D     True
dtype: bool

cols = df.columns[df.dtypes.eq(object)]
# Actually, `cols` can be any list of columns you need to convert.
cols
# Index(['B', 'D'], dtype='object')

df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')
# Alternatively,
# for c in cols:
#     df[c] = pd.to_numeric(df[c], errors='coerce')

df

   A      B  C      D
0  5    1.0  9   23.0
1  0    NaN  3    1.0
2  3    NaN  5    NaN
3  3   50.0  2  268.0
4  7  234.0  4    NaN

Applying pd.to_numericalong the columns (i.e., axis=0, the default) should be slightly faster for long DataFrames.

对于长数据帧pd.to_numeric,沿列应用(即,axis=0默认值)应该稍微快一些。

回答by Jeff

In [30]: pd.Series([1,2,3,4,'.']).convert_objects(convert_numeric=True)
Out[30]: 
0     1
1     2
2     3
3     4
4   NaN
dtype: float64