在 Pandas DF 中使用 datetime timedelta 和系列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/35327450/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 00:40:30  来源:igfitidea点击:

Using datetime timedelta with a series in a pandas DF

pythondatetimepandas

提问by Luis Miguel

I have a pandas sim_df that looks like this:

我有一个看起来像这样的Pandas sim_df:

enter image description here

在此处输入图片说明

Now, I want to add another column, "date" that is the date corresponding to 'now' plus 'cum_days' (a delta time).

现在,我想添加另一列“日期”,它是对应于“现在”加上“cum_days”(增量时间)的日期。

start = dt.datetime.now()
sim_df['date'] = start + dt.timedelta(sim_df['cum_days'])

But it looks like deltatime does not use a series, but a fixed scalar.

但看起来 deltatime 不使用系列,而是使用固定标量。

TypeError: unsupported type for timedelta days component: Series

Is there a way to solve this in a vectorized operation without iterating over each row of sim_df?

有没有办法在不迭代 sim_df 的每一行的情况下在矢量化操作中解决这个问题?

采纳答案by Kris

How about this?

这个怎么样?

start = dt.datetime.now()
sim_df['date'] = start + sim_df['cum_days'].map(dt.timedelta)

This applies dt.timedeltato each element of the cum_dayscolumn individually.

这分别适用dt.timedeltacum_days列的每个元素。

回答by Alexander

Add the timedelta to now using a list comprehension.

使用列表理解将 timedelta 添加到 now。

sim_df = pd.DataFrame({'delta_time_days': [1.02, .09, 1.08, 1.7, 4.1, 0.3, .13, .01, .3, .7], 
                       'cum_days': [1.1, 1.1, 2.2, 3.9, 8.0, 8.3, 8.4, 8.4, 8.8, 9.5]})

sim_df['date'] = [dt.datetime.now() + dt.timedelta(days=d) for d in sim_df.cum_days]

>>> sim_df
   cum_days  delta_time_days                       date
0       1.1             1.02 2016-02-11 17:36:11.320271
1       1.1             0.09 2016-02-11 17:36:11.320286
2       2.2             1.08 2016-02-12 20:00:11.320289
3       3.9             1.70 2016-02-14 12:48:11.320292
4       8.0             4.10 2016-02-18 15:12:11.320296
5       8.3             0.30 2016-02-18 22:24:11.320299
6       8.4             0.13 2016-02-19 00:48:11.320301
7       8.4             0.01 2016-02-19 00:48:11.320304
8       8.8             0.30 2016-02-19 10:24:11.320306
9       9.5             0.70 2016-02-20 03:12:11.320309

回答by EdChum

construct a TimedeltaIndexfrom your column and add this to the scalar value:

TimedeltaIndex从您的列中构造一个并将其添加到标量值中:

In [26]:
sim_df = pd.DataFrame({'delta_time_days': [1.02, .09, 1.08, 1.7, 4.1, 0.3, .13, .01, .3, .7], 
                       'cum_days': [1.1, 1.1, 2.2, 3.9, 8.0, 8.3, 8.4, 8.4, 8.8, 9.5]})
start = dt.datetime.now()
sim_df['date'] = start + pd.TimedeltaIndex(sim_df['cum_days'], unit='D')
sim_df

Out[26]:
   cum_days  delta_time_days                       date
0       1.1             1.02 2016-02-12 01:40:32.413413
1       1.1             0.09 2016-02-12 01:40:32.413413
2       2.2             1.08 2016-02-13 04:04:32.413413
3       3.9             1.70 2016-02-14 20:52:32.413413
4       8.0             4.10 2016-02-18 23:16:32.413413
5       8.3             0.30 2016-02-19 06:28:32.413413
6       8.4             0.13 2016-02-19 08:52:32.413413
7       8.4             0.01 2016-02-19 08:52:32.413413
8       8.8             0.30 2016-02-19 18:28:32.413413
9       9.5             0.70 2016-02-20 11:16:32.413413