Python ValueError:x 和 y 必须具有相同的第一维
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/25615818/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
ValueError: x and y must have same first dimension
提问by user24534
I get an error message
我收到一条错误消息
ValueError: x and y must have same first dimension.
ValueError: x 和 y 必须具有相同的第一维。
Here is the code:
这是代码:
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
date,bid,ask = np.loadtxt('GBPUSD1d.txt', unpack=True,
delimiter =',',converters={0:mdates.strpdate2num('%Y%m%d%H%M%S')})
avgLine = ((bid+ask)/2)
patternAr = []
performanceAr = []
patForRec = []
eachPattern = []
def percentChange(startPoint, currentPoint):
return ((float(currentPoint)- startPoint)/abs(startPoint))*100.00
def patternStorage():
patStartTime = time.time()
x = (len(avgLine))-30
y = 11
while y < x:
pattern = []
p1 = percentChange(avgLine[y-10], avgLine[y-9])
...
p10 = percentChange(avgLine[y-10], avgLine[y])
outcomeRange = avgLine[y+20:y+30]
currentPoint = avgLine[y]
try:
avgOutcome = reduce(lambda x, y: x + y, outcomeRange) / len(outcomeRange)
except Exception, e:
print str(e)
avgOutcome = 0
futureOutcome = percentChange(currentPoint, avgOutcome)
pattern.append(p1)
pattern.append(p2)
pattern.append(p3)
pattern.append(p3)
pattern.append(p4)
pattern.append(p5)
pattern.append(p6)
pattern.append(p7)
pattern.append(p8)
pattern.append(p9)
pattern.append(p10)
patternAr.append(pattern)
performanceAr.append(futureOutcome)
y += 1
patEndTime = time.time()
print len (patternAr)
print len (performanceAr)
print 'Patten storage took:', patEndTime - patStartTime, 'seconds'
def currentPattern():
cp1 = percentChange(avgLine[-11], avgLine[-10])
...
cp10 = percentChange(avgLine[-11], avgLine[-1])
patForRec.append(cp1)
...
patForRec.append(cp10)
print patForRec
def patternRecognition():
for eachPattern in patternAr:
sim1 = 100.00 - abs(percentChange(eachPattern[0], patForRec[0]))
...
sim10 = 100.00 - abs(percentChange(eachPattern[9], patForRec[9]))
howSim =((sim1+sim2+sim3+sim4+sim5+sim6+sim7+sim8+sim9+sim10))/float(10)
if howSim > 70:
patdex = patternAr.index(eachPattern)
print 'predicted outcome',performanceAr[patdex]
xp = [1,2,3,4,5,6,7,8,9,10]
fig = plt.figure()
plt.plot(xp, patForRec)
plt.plot(xp, eachPattern)
plt.show()
patternStorage()
currentPattern()
patternRecognition()
print (len(patForRec))
print (len(eachPattern))
Full error message
完整的错误信息
Traceback (most recent call last):
File "C:\Python27\ANN.py", line 165, in <module>
patternRecognition()
File "C:\Python27\ANN.py", line 131, in patternRecognition
plt.plot(xp, eachPattern)
File "C:\Python27\lib\site-packages\matplotlib\pyplot.py", line 3093, in plot
ret = ax.plot(*args, **kwargs)
File "C:\Python27\lib\site-packages\matplotlib\axes\_axes.py", line 1373, in plot
for line in self._get_lines(*args, **kwargs):
File "C:\Python27\lib\site-packages\matplotlib\axes\_base.py", line 303, in _grab_next_args
for seg in self._plot_args(remaining, kwargs):
File "C:\Python27\lib\site-packages\matplotlib\axes\_base.py", line 281, in _plot_args
x, y = self._xy_from_xy(x, y)
File "C:\Python27\lib\site-packages\matplotlib\axes\_base.py", line 223, in _xy_from_xy
raise ValueError("x and y must have same first dimension")
ValueError: x and y must have same first dimension
采纳答案by John Sharp
The problem is that eachPatternhas a 11 elements in it, whereas all xphas 10. The reason for this is probably on lines 52 and 53 in the patternStoragefunction of your code where you append p3to your list twice:
问题是其中eachPattern有 11 个元素,而所有元素xp都有 10 个。 原因可能是在patternStorage代码函数中的第 52 行和第 53 行,其中p3两次附加到列表中:
pattern.append(p3)
pattern.append(p3)
if you get rid of one of these the graph plots fine. Though it is stored in a loop to plot multiple times, don't know if you wanted to do that...
如果你摆脱其中之一,图表就会很好地绘制。虽然它存储在一个循环中以多次绘制,但不知道您是否想这样做...
If you try and do more things inside loops, so you have to write less code, this sort of problem where you accidentally do something twice will happen less.
如果你尝试在循环内做更多的事情,那么你必须编写更少的代码,这种你不小心做两次的问题就会少发生。

