C++ OpenCV:如何使用掩码参数进行特征点检测(SURF)
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/16365129/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
OpenCV: howto use mask parameter for feature point detection (SURF)
提问by Hyndrix
I want to limit a SurfFeatureDetector to a set of regions (mask). For a test I define only a single mask:
我想将 SurfFeatureDetector 限制为一组区域(掩码)。对于测试,我只定义了一个掩码:
Mat srcImage; //RGB source image
Mat mask = Mat::zeros(srcImage.size(), srcImage.type());
Mat roi(mask, cv::Rect(10,10,100,100));
roi = Scalar(255, 255, 255);
SurfFeatureDetector detector();
std::vector<KeyPoint> keypoints;
detector.detect(srcImage, keypoints, roi); // crash
//detector.detect(srcImage, keypoints); // does not crash
When I pass the "roi" as the mask I get this error:
当我将“roi”作为掩码传递时,出现此错误:
OpenCV Error: Assertion failed (mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size())) in detect, file /Users/ux/Downloads/OpenCV-iOS/OpenCV-iOS/../opencv-svn/modules/features2d/src/detectors.cpp, line 63
What is wrong with this? How can I correctly pass a mask to the SurfFeatureDetector's "detect" method?
这有什么问题?如何正确地将掩码传递给 SurfFeatureDetector 的“检测”方法?
Regards,
问候,
回答by Alexey
Two things about the mask.
关于面具的两件事。
- the mask should be a 1-channel matrix of 8-bit unsigned chars, which translates to opencv type
CV_8U
. In your case the mask is of type srcImage.type(), which is a 3-channel matrix - you are passing
roi
to the detector but you should be passingmask
. When you are making changes toroi
, you are also changingmask
.
- 掩码应该是一个 8 位无符号字符的 1 通道矩阵,转换为 opencv 类型
CV_8U
。在您的情况下,掩码的类型为 srcImage.type(),这是一个 3 通道矩阵 - 您正在通过
roi
检测器,但您应该通过mask
。当您对 进行更改时roi
,您也在更改mask
。
the following should work
以下应该工作
Mat srcImage; //RGB source image
Mat mask = Mat::zeros(srcImage.size(), CV_8U); // type of mask is CV_8U
// roi is a sub-image of mask specified by cv::Rect object
Mat roi(mask, cv::Rect(10,10,100,100));
// we set elements in roi region of the mask to 255
roi = Scalar(255);
SurfFeatureDetector detector();
std::vector<KeyPoint> keypoints;
detector.detect(srcImage, keypoints, mask); // passing `mask` as a parameter
回答by alrikai
I tacked your ROI code onto some existing code I was working on, with the following changes it worked for me
我将您的 ROI 代码添加到我正在处理的一些现有代码上,以下更改对我有用
cv::Mat mask = cv::Mat::zeros(frame.size(), CV_8UC1); //NOTE: using the type explicitly
cv::Mat roi(mask, cv::Rect(10,10,100,100));
roi = cv::Scalar(255, 255, 255);
//SURF feature detection
const int minHessian = 400;
cv::SurfFeatureDetector detector(minHessian);
std::vector<cv::KeyPoint> keypoints;
detector.detect(frame, keypoints, mask); //NOTE: using mask here, NOT roi
cv::Mat img_keypoints;
drawKeypoints(frame, keypoints, img_keypoints, cv::Scalar::all(-1), cv::DrawMatchesFlags::DEFAULT);
cv::imshow("input image + Keypoints", img_keypoints);
cv::waitKey(0);
Without the changes to the type and the use of mask
instead of roi
as your mask, I'd get a runtime error as well. This makes sense, as the detect method wants a mask -- it should be the same size as the original image, and roi isn't (it's a 100x100 rectangle). To see this visually, try displaying the mask and the roi
如果不更改类型和使用mask
代替roi
作为掩码,我也会收到运行时错误。这是有道理的,因为检测方法需要一个掩码——它应该与原始图像的大小相同,而 roi 不是(它是一个 100x100 的矩形)。要直观地看到这一点,请尝试显示掩码和 roi
cv::imshow("Mask", mask);
cv::waitKey(0);
cv::imshow("ROI", roi);
cv::waitKey(0);
The type has to match also; the mask should be single channel, while your image type is likely of type 16, which maps to CV_8UC3
, a triple channel image
类型也必须匹配;掩码应该是单通道,而您的图像类型可能是类型 16,它映射到CV_8UC3
三通道图像
回答by Spandan
If you are looking to apply the same for irregular mask then:
如果您希望将相同的方法应用于不规则蒙版,则:
Mat& obtainIregularROI(Mat& origImag, Point2f topLeft, Point2f topRight, Point2f botLeft, Point2f botRight){
static Mat black(origImag.rows, origImag.cols, origImag.type(), cv::Scalar::all(0));
Mat mask(origImag.rows, origImag.cols, CV_8UC1, cv::Scalar(0));
vector< vector<Point> > co_ordinates;
co_ordinates.push_back(vector<Point>());
co_ordinates[0].push_back(topLeft);
co_ordinates[0].push_back(botLeft);
co_ordinates[0].push_back(botRight);
co_ordinates[0].push_back(topRight);
drawContours( mask,co_ordinates,0, Scalar(255),CV_FILLED, 8 );
// origImag.copyTo(black,mask);
//BasicAlgo::getInstance()->writeImage(black);
return mask; // returning the mask only
}
Then as usual, generate SIFT/SURF/... pointer
然后像往常一样,生成 SIFT/SURF/... 指针
// Create smart pointer for SIFT feature detector.
// 为 SIFT 特征检测器创建智能指针。
Ptr<FeatureDetector> SIFT_FeatureDetector = FeatureDetector::create("SIFT");
vector<KeyPoint> SIFT_Keypoints;
vector<KeyPoint> SIFT_KeypointsRotated;
Mat maskedImg = ImageDeformationOperations::getInstance()->obtainIregularROI( rotatedImg,rotTopLeft,rotTopRight,rotBotLeft,rotBotRight);
SIFT_FeatureDetector->detect(rotatedImg, SIFT_KeypointsRotated, maskedImg);
Mat outputSIFTKeyPt;
drawKeypoints(rotatedImg, SIFT_KeypointsRotated, outputSIFTKeyPt, keypointColor, DrawMatchesFlags::DEFAULT);