Python 在具有数值的列上的 Pandas 数据框上按行应用函数

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/29292114/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 04:20:31  来源:igfitidea点击:

Apply function row wise on pandas data frame on columns with numerical values

pythonpandas

提问by pdubois

I have the following data frame:

我有以下数据框:

import pandas as pd
df = pd.DataFrame({'AAA' : ['w','x','y','z'], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]})

Which looks like this:

看起来像这样:

In [32]: df
Out[32]:
  AAA  BBB  CCC
0   w   10  100
1   x   20   50
2   y   30  -30
3   z   40  -50

What I want to do is to perform function operation on every row for every column except those with non-numerical value (in this case AAA). In the real case the non-numerical case is always on first column, and the rest (could be greater than 2 columns) are always numerical.

我想要做的是对每一列的每一行执行函数操作,除了那些具有非数值的值(在这种情况下AAA)。在实际情况下,非数字情况总是在第一列,其余(可能大于 2 列)总是数字。

The final desired output is:

最终所需的输出是:

  AAA  BBB  CCC  Score
0   w   10  100  110
1   x   20   50   70
2   y   30  -30    0
3   z   40  -50  -10

I tried this but failed:

我试过这个但失败了:

import numpy as np
df["Score"] = df.apply(np.sum, axis=1)

What's the right way to do it?

正确的做法是什么?

Update2:

更新2:

This is the code that give SettingWithCopyWarning. Please fresh start the ipython for testing.

这是给出的代码SettingWithCopyWarning。请重新启动 ipython 进行测试。

import pandas as pd
import numpy as np 
def cvscore(fclist):
    sd = np.std(fclist)
    mean = np.mean(fclist)
    cv = sd/mean
    return cv

def calc_cvscore_on_df(df):
    df["CV"] = df.iloc[:,1:].apply(cvscore, axis=1)
    return df

df3 = pd.DataFrame(np.random.randn(1000, 3), columns=['a', 'b', 'c'])
calc_cvscore_on_df(df3[["a","b"]])

采纳答案by unutbu

To select everything but the first column, you could use df.iloc[:, 1:]:

要选择除第一列之外的所有内容,您可以使用df.iloc[:, 1:]

In [371]: df['Score'] = df.iloc[:, 1:].sum(axis=1)

In [372]: df
Out[372]: 
  AAA  BBB  CCC  Score
0   w   10  100    110
1   x   20   50     70
2   y   30  -30      0
3   z   40  -50    -10

To apply an arbitrary function, func, to each row:

要将任意函数func, 应用于每一行:

df.iloc[:, 1:].apply(func, axis=1)


For example,

例如,

import numpy as np
import pandas as pd

def cvscore(fclist):
    sd = np.std(fclist)
    mean = np.mean(fclist)
    cv = sd/mean
    return cv

df = pd.DataFrame({'AAA' : ['w','x','y','z'], 'BBB' : [10,20,30,40],
                   'CCC' : [100,50,-30,-50]})

df['Score'] = df.iloc[:, 1:].apply(cvscore, axis=1)
print(df)

yields

产量

  AAA  BBB  CCC     Score
0   w   10  100  1.211386
1   x   20   50  0.868377
2   y   30  -30       NaN
3   z   40  -50 -5.809058